→IP3↑→[Ca2+]i↑→インスリン開口分泌
→DAG↑→PKC活性化→インスリン開口分泌
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/10/05 16:45:15」(JST)
インスリン(インシュリン、insulin)は、膵臓に存在するランゲルハンス島(膵島)のβ細胞から分泌されるペプチドホルモンの一種。名前はラテン語の insula (島)に由来する。21アミノ酸残基のA鎖と、30アミノ酸残基のB鎖が2つのジスルフィド結合を介してつながったもの。C-ペプチドは、インスリン生成の際、プロインスリンから切り放された部分を指す。
生理作用としては、主として血糖を抑制する作用を有する。骨格筋におけるグルコース、アミノ酸、カリウムの取り込み促進とタンパク質合成の促進、肝臓における糖新生の抑制、グリコーゲンの合成促進・分解抑制、脂肪組織における糖の取り込みと利用促進、脂肪の合成促進・分解抑制などの作用により血糖を抑制し、グリコーゲンや脂肪などの各種貯蔵物質の新生を促進する。腎尿細管におけるNa再吸収促進作用もある。炭水化物を摂取すると小腸でグルコースに分解され、大量のグルコースが体内に吸収される。体内でのグルコースは、エネルギー源として重要である反面、高濃度のグルコースはそのアルデヒド基の反応性の高さのため生体内のタンパク質と反応して糖化反応を起こし、生体に有害な作用(糖尿病性神経障害・糖尿病性網膜症・糖尿病性腎症の微小血管障害)をもたらすため、インスリンの分泌によりその濃度(血糖)が常に一定範囲に保たれている。
インスリンは血糖値の恒常性維持に重要なホルモンである。血糖値を低下させるため、糖尿病の治療にも用いられている。逆にインスリンの分泌は血糖値の上昇に依存する。
従前は「インシュリン」という表記が医学や生物学などの専門分野でも正式なものとして採用されていたが、2006年現在はこれらの専門分野においては「インスリン」という表記が用いられている。一般にはインスリンとインシュリンの両方の表記がともに頻用されている。
インスリンはアミノ酸からなるペプチドで、A鎖とB鎖の二量体という構造を有している。 プロセッシングされる前のプリプロプロテインは、ロイシン(18%)、グリシン(11%)、アラニン(9%)で38%とその4割近くを占める。 これはプロセッシング後に4つに切断され、そのうちの2つがA鎖とB鎖として切りだされ二量体を構成する。
A鎖: GIVEQCCTSICSLYQLENYCN
B鎖: FVNQHLCGSHLVEALYLVCGERGFFYTPKT
二量体のアミノ酸比率は、システイン(12%)とロイシン(12%)がもっとも多く合計で1/4を占める。
食事後の1~2時間ほどの消化の間、膵臓からのインスリンの放出は血中濃度が一定となるようには放出されてはおらず、3~6分の周期で血中インスリン濃度をおおよそ100 ピコモル/Lから800 ピコモル/L以上へと変動するように放出されている。 これは細胞にあるインスリン受容体の(インスリンに対する感応度や細胞表面の受容体の数そのものを減少させる)脱感作(英)を避け、インスリンの主要標的である肝臓の細胞に対してインスリンが十分に作用を果たせるようにするためではないかと考えられている。[2] インスリン受容体の脱感作はインスリン抵抗性とも関連があると見られることから、 インスリン療法の管理においては、このインスリン振動すなわち一定濃度ではなく理想的には血中濃度が周期的に変動するような投与についてその有効性を検討する必要があり、将来のインスリンポンプはこの点について考慮されることが望まれる。
1869年にドイツベルリンの医学生パウル・ランゲルハンス (Paul Langerhans) は、顕微鏡で見た膵臓の構造を研究していた。後にランゲルハンス島として知られる「小さな枠の集合体」は当時まだ知られていなかったが、エドワール・ラゲス (Edouard Laguesse) は、それらが消化に関わる大きな役割を果たすものであり得ると主張した。
1889年、リトアニア出身のドイツの内科医オスカル・ミンコフスキ (Oskar Minkowski) とヨーゼフ・フォン・メーリング (Joseph von Mehring) は健康な犬の膵臓を取り除く研究を行った。実験が始まって数日後、ミンコフスキーはハエがいつもこの犬の尿に群がっていることに気付いた。尿を調べてみると、糖分が含まれており、ここで初めて膵臓と糖尿病との関係が実証された。
1901年、アメリカの病理学者ユージン・オピー(Eugene Opie)によりランゲルハンス島と糖尿病との関連が明らかにされたとき、この研究は新たな段階を迎えた。つまり、糖尿病はランゲルハンス島の部分的あるいは全体的な破壊によって引き起こされるということがわかったのである。しかしながら、ランゲルハンス島が果たす特定の役割については、ここではまだよくわかっていなかった。
それから20年、これに連なる数々の研究が科学者の間で行われた。1921年には、カナダの整形外科医フレデリック・バンティング(Frederick Banting)と医学生チャールズ・ベスト(Charles Best)が研究室でインスリンの抽出に成功した。
1922年1月11日、当時14歳であった1型糖尿病患者に世界で初めてインスリンの投与が行われたが、これは、精製方法が未熟であったこともあり、患者にひどいアレルギー反応がでたため中断された。バートラム・コリップは、それから12日間投与量などの改善に日夜努力し、23日に再び投与が行われた。 今度は副作用を引き起こすこともなく、糖尿病の症状を取り除くことにも成功した。しかしながら、バンティングとベストはコリップを一種の闖入者と見なしたようで不和を生じたため、その後すぐにコリップは去って行った。
1922年の春が過ぎ、ベストは大量の需要にも応えられるように抽出技術を工夫したが、精製は未熟であった。1921年の発表の直後、イーライリリー社から、彼らは支援の申し出を受けており、4月にこの申し出を受けた。11月にリリー社は技術の革新に成功し、非常に純粋なインスリンの生産に成功した。このインスリンは、アイレチンという名ですぐ市場に出された。
1933年には、ポーランドの精神医学者マンフレート・ザーケルにより、インスリンを大量投与することにより低血糖ショックを人為的に起こさせて精神病患者を治療するというインスリンショック療法(Insulin shock therapy)が考案されたが、死亡例が多く、その後電気けいれん療法、薬物療法(クロルプロマジンに代表される抗精神病薬)などが登場したため1950年代には廃れた。
インスリンについては五人が、ノーベル賞を受賞している。インスリンを発見したバンティングとマクラウドが1923年に賞を受賞。その後も、1958年にタンパク質の中で世界で初めてインスリンのアミノ酸構造を解明したフレデリック・サンガー (Frederick Sanger) が、1964年にドロシー・ホジキン (Dorothy Crowfoot Hodgkin)が、1977年にはロサリン・ヤロー(Rosalyn Sussman Yalow)がラジオイムノアッセイをインスリンで開発した事で、それぞれノーベル賞を受賞している。
1921年にインスリンの分離に成功。1型糖尿病における薬物療法として、現在のところ唯一の治療法である。インスリンはタンパク質であるため、消化管内で速やかに分解されるため経口投与不可能である。そのため皮下注射によって投与することが多い。インスリン製剤は、作用発現時間、作用持続時間、原料となる動物種(牛、豚、人)によって分類されている。組み換えDNA技術によってヒト型インスリンが開発されてからはヒト型を用いるのが一般的である。ヒト型インスリン は大腸菌や酵母菌にヒトインスリン遺伝子を導入しインスリンを生産している。
詳細は「インスリンアナログ」を参照
インスリン製剤は作用発現時間や作用持続時間によって超速効型、速効型、中間型、混合型、持効型溶解溶解に分類される。持続型 (ultralente, U)というものも存在するが、近年ではあまり用いられない。インスリン製剤はカートリッジ製剤、キット製剤、バイアル製剤があるが、ここでは簡単のためバイアル製剤を用いて説明する。
一般名 | 商品名 | 発現時間(min) | 最大作用時間(Hr) | 持続時間(Hr) |
---|---|---|---|---|
インスリンアスパルト | ノボラピッド® | 10~20 | 1~3 | 3~5 |
インスリンリスプロ | ヒューマログ® | ~15 | 0.5~1.5 | 3~5 |
インスリングルリジン | アピドラ® | ~15 | 0.5~1.5 | 3~5 |
商品名 | 発現時間(min) | 最大作用時間(Hr) | 持続時間(Hr) |
---|---|---|---|
ノボリンR® | 30 | 1~3 | 8 |
ヒューマリンR® | 30~60 | 1~3 | 5~7 |
商品名 | 発現時間(Hr) | 最大作用時間(Hr) | 持続時間(Hr) |
---|---|---|---|
ノボリン30R® | 0.5 | 2~8 | 24 |
ヒューマリン3/7® | 0.5~1 | 2~12 | 18~24 |
商品名 | 発現時間(Hr) | 最大作用時間(Hr) | 持続時間(Hr) |
---|---|---|---|
ノボリンN® | 1.5 | 4~12 | 24 |
ヒューマリンN® | 1~3 | 8~10 | 18~24 |
インスリン注入には2通りの方法がある。日本ではペン型注射器を使用するのが一般的である。しかし、例えばアメリカでは日本に比べてインスリンポンプの普及が遥かに進んでいる。ファイザー社が発売した吸入インスリンは2007年秋、市場規模が少ない事から発売休止になっている。
ペン型注射器を用いて、1日数回の皮下注射によってインスリン注入を行う。
コンピューター制御で自動的にインスリンを注入する機械で、膵臓に似せたインスリンの注入スケジュール・プログラムを入力できるものである。これによる治療をインスリン持続皮下注療法という。インスリンポンプを使うと、針は刺しっぱなしでよく、針の刺し換えは 3日に1回程度で済む。短所としては、生体の膵臓は体調に合わせてインスリンを分泌するが、インスリンポンプはプログラムに合わせて人間の生活を管理しなければならないということ、また器械が故障すると糖尿病性ケトアシドーシスなどの事故も起こりうるので、患者はペン型注射器を予備として常備しておく必要があることである(参考:2007年現在、アメリカの某会社のインスリンポンプは血糖値を測定しつつリアルタイムにコンピューター処理し、現在の適正なインスリン注入量を投与する技術レベルにまで達している。ただ、日本では厚生労働省の認可に時間がかかるため、最新機種よりも常に2~3世代古いインスリンポンプの輸入販売が行われ続けているのが現状である)。
インスリンを用いた血糖管理、糖尿病の治療をインスリン療法という。インスリン療法としては強化インスリン療法とその他の治療法に分けられる。まずはインスリンの適応があるかどうかを判断する。
インスリンの適応があると判断したら、患者の状態を把握し、インスリン強化療法を行うのか、それともその他の治療法を行うのかを判断する。インスリン療法の基本は健常者にみられる血中インスリンの変動パターンをインスリン注射によって模倣することである。健常者のインスリン分泌は基礎インスリン分泌と、食事後のブドウ糖やアミノ酸刺激による追加インスリン分泌からなっている。これをもっともよく再現できるのは強化インスリン療法であるが、手技が煩雑であるのがネックである。今後の糖尿病管理も強化インスリン療法を行うのなら、患者教育なども行い導入する価値はあるが、手術や処置で一時的に経口血糖降下薬を用いられないという場合、生活スタイルから強化インスリン療法を行うのが不可能な場合はその他の療法が選択される。
インスリン療法の絶対的適応例では入院による導入が望ましいといわれているが、相対的適応例におけるインスリン療法の開始や経口血糖降下薬からの切り替えの場合は外来で行うことが多い。この際、インスリン量の調節のため外来を頻回にすることで対処することが多い。外来での導入に関しての危険性を評価するには
を確認することが望ましい。これらに該当するようならば糖尿病専門医がいる施設や教育入院を用いないと外来でのコントロールは危険である。
インスリン療法では注意するべきことがいくつかある。インスリンの導入では皮下注射を自分で行えなければならない、血糖自己測定(SMBG)ができなければならない。シックディの対応、低血糖の対応といった問題を克服しなければ自宅では行うことができない。入院中は看護師の管理によって教育が不十分でも管理可能だが、退院前にこれらの教育がなされていなければ大きな事故につながりかねない。
特に気をつけることが低血糖の対応である。低血糖発作は初期ならばブドウ糖を摂取することで改善できる。しかしこのあと、低血糖になったからということで次の投与のインスリンを自己判断でスキップしてしまう場合が多い。低血糖が起こった場合は責任インスリンの調節をし再発予防を行わないと意味がないのでこういったことには十分留意する。
インスリンの調節中、ソモジー効果という現象に出会うことがある。これはインスリン量が過剰であるために、低血糖がおこり、その反動として拮抗ホルモンが分泌され高血糖となることである。早朝に高血糖となることが多い。インスリンの不足と思い増量すると重篤な低血糖発作がおこる。夜中の三時など高血糖発作が起こる前の時間の血糖値を測定すれば判明する。このころに低血糖になっていれば、それはソモジー効果である可能性が高い。
インスリン療法を開始すると膵機能が回復してくることがある。この目安はインスリン必要量の低下によって判断する。この場合はインスリン療法を中止できることもある。
αGIなどの経口血糖降下薬の中にはインスリンと併用できるものもある。SU剤で二次無効となったとき、内服薬を中止せず就寝前にNを投与することで糖毒性が解除されSU薬の効果が再び現れることもある。
この記事は更新が必要とされています。この記事の情報は長らく更新されておらず、古い情報が掲載されています。編集の際に新しい情報を記事に反映させてください。反映後、このタグは除去してください。(2013年5月) |
即効型又は中間型インスリンを用いるときの考え方であり、同インスリン製剤を用いる上での難しさを物語る考え方である。持効型インスリンに超速効型インスリンを組み合わせて用いる際にはこのようなことを考える必要がない。
朝食前のRは昼食前の血糖を下げる。昼食前のRは夕食前の血糖を下げる。夕食前のRは就寝前の血糖を下げ、就寝前のNは朝食前の血糖を下げると考えると分かりやすい。
強化インスリン療法とは、インスリンの頻回注射。または持続皮下インスリン注入(CSII)に血糖自己測定(SMBG)を併用し、医師の指示に従い、患者自身がインスリン注射量を決められた範囲で調節しながら、良好な血糖コントロールを目指す方法である。基本的には食事をしている患者では、各食前、就寝前の一日四回血糖を測定し、各食前に速効型インシュリン(R)を就寝前に中間型インシュリン(N)の一日四回を皮下注にて始める。オーソドックスなやり方としては各回3~4単位程度、一日12~16単位から始める。量を調節する場合は2単位程度までの変更にとどめた方が安全である。超速効型インシュリン(Q)や持続型も近年は多く用いられる。
初期投与量としては0.5単位/Kg/dayにて開始し、数日の効果判定後0.7~1.2単位/Kg/dayで維持する場合が多い。
体重 | 単位の計算値 | 処方例 | 朝食前R | 昼食前R | 夕食前R | 就寝前N |
---|---|---|---|---|---|---|
50Kg | 25単位 | 24単位 | 6 | 6 | 6 | 6 |
60Kg | 30単位 | 32単位 | 8 | 8 | 8 | 8 |
70Kg | 35単位 | 36単位 | 9 | 9 | 9 | 9 |
食前血糖値、空腹時血糖値が140mg/dl以上や食後2時間血糖値が200mg/dl以上の場合は責任インスリンの増量を検討する。食前血糖値が70mg/dl以下であれば責任インスリンの減量を検討する。但し、調節するインスリンの総量は4単位を超えない範囲で行うのが安全である。
初期投与量としては0.2単位/Kg/dayにて開始し、数日の効果判定後0.3~0.5単位/Kg/dayで維持する場合が多い。
体重 | 単位の計算値 | 処方例 | 朝食前R | 昼食前R | 夕食前R | 就寝前N |
---|---|---|---|---|---|---|
50Kg | 10単位 | 11単位 | 3 | 3 | 3 | 2 |
60Kg | 12単位 | 12単位 | 3 | 3 | 3 | 3 |
70Kg | 14単位 | 16単位 | 4 | 4 | 4 | 4 |
食前血糖値、空腹時血糖値が140mg/dl以上や食後2時間血糖値が200mg/dl以上の場合は責任インスリンの増量を検討する。食前血糖値が70mg/dl以下であれば責任インスリンの減量を検討する。但し、調節するインスリンの総量は4単位を超えない範囲で行うのが安全である。
糖尿病患者が治療中に発熱、下痢、嘔吐をきたし、または食思不振のため食事ができない状態をシックディという。この場合の対応としては主治医や医療機関に連絡を行い指示を受ける、インスリンを決して自己中断をしない、水分を摂取して十分に脱水を防ぐ、口当たりがよく消化によいものを摂取し絶食にならないようにする、血糖を3~4時間ごとに測定する、可能ならば尿中ケトン体を測定するといったことが原則となる。2型糖尿病で食事が十分に摂取できていれば普段通りにインスリンの投与を行い、食事量が半分ならばインスリンを普段の半分量使用する、殆ど摂取が不可能ならば血糖値に応じてインスリンスライディングスケールで対応するのが一般的である。1型糖尿病の場合は基礎分泌に相当するインスリン量は変更しないのが原則である。入院の適応を考えるべき状況とは高熱が2日以上続く時や、嘔吐や下痢が続く時、脱水や尿量減少が認められるとき、高血糖(350mg/dl以下にならない)や尿中ケトン体陽性が続く時、高血糖に伴う症状(口渇、多飲、多尿、急激な体重減少、意識障害)があるときなどがあげられる。この状態になった場合は糖尿病性昏睡などの治療にのっとって治療を行う。
基礎インスリン分泌が保たれているような患者では、速効型(または超速効型)インスリンの毎食前3回注射など強化インスリン療法に準じた注射方法がある。また頻回のインスリン注射が困難な患者や強化インスリン療法が適応とならない患者(殆どが相対的適応)では混合型または中間型の一日1回~2回投与という方法もある。具体的にはNを朝食前に一回打ちにしたり、混合型製剤を朝食前、夕食前の2回打ちにし、食後血糖を抑えるためαグルコシターゼ阻害薬を併用した入りするなどがオーソドックスといわれている。このような投与法でもインシュリン量は0.2単位/kgにて開始し、0.5単位/kgまで増量可能である。中間型を2回打ちする場合は朝:夕を2:1または3:2の比率とすることが多い。中間型インスリンが一日10単位以上の場合は一日二回と分けることが多い。
初期投与量としては0.2単位/Kg/dayにて開始する。経口薬を併用することが多い。昼食前後の責任インスリンは存在しない。
体重 | 単位の計算値 | 処方例 | 朝食直前 | 昼食直前 | 夕食直前 | 就寝前 |
---|---|---|---|---|---|---|
50Kg | 10単位 | 10単位 | 6 | 0 | 4 | 0 |
60Kg | 12単位 | 12単位 | 8 | 0 | 4 | 0 |
70Kg | 14単位 | 14単位 | 10 | 0 | 4 | 0 |
初期投与量としては0.1単位/Kg/dayにて開始する。経口薬を併用することが多い。食前血糖値で効果判定を行う。
体重 | 単位の計算値 | 処方例 | 朝食前 | 昼食前 | 夕食前 | 就寝前 |
---|---|---|---|---|---|---|
50Kg | 5単位 | 5単位 | 0 | 0 | 0 | 5 |
60Kg | 6単位 | 6単位 | 0 | 0 | 0 | 6 |
70Kg | 7単位 | 7単位 | 0 | 0 | 0 | 7 |
空腹時血糖80mg/dl以下ならば2単位の減量を検討、空腹時血糖130mg/dl以上ならば2単位の増量を検討する。
ステロイドの血糖上昇作用は投与後2~3時間で発現し5~8時間で最大に達する。即ち空腹時血糖は正常であっても午後から夜にかけて高血糖になりやすい。食後血糖が250~300mg/dlに達した場合はインスリン療法を行う場合が多い。なお経口薬でも血糖コントロールは可能である。もともとインスリンを用いている場合はPSL5mgにつきインスリン2~4単位の増量が必要となる場合が多い。インスリンを用いていない糖尿病患者の場合はPSL20mg/dayで12~18単位/day、PSL40mg/dayで26から32単位/dayが最終投与量となる場合が多い。また非糖尿病患者の場合は0.2単位/Kg/dayでインスリン療法を開始する。ステロイドパルス療法では血糖が400mg/dl程度まで急激に上昇するため一時的にスライディングスケールを用いることが多い。下記がよく用いられるスライディングスケールの例である。
血糖値(mg/dl) | 処置 |
---|---|
<70 | 50%ブドウ糖20ml静注、またはブドウ糖10g内服 |
70~150 | stay |
150~200 | R4単位皮下注 |
200~250 | R6単位皮下注 |
250~300 | R8単位皮下注 |
300~350 | R10単位皮下注 |
350~400 | R12単位皮下注 |
インスリン療法を行う場合は経口血糖降下薬を使用している場合が多い。欧米ではSU薬などを中止せずそのまま継続した方が血糖コントロールが安定し、低血糖のリスクが減るというデータもある。SU薬、αGI、BG薬は保険診療上も併用可能であるがTZD薬や速効型インスリン分泌促進薬は保険診療上併用ができない。SU薬を1錠だけ残し、インスリン導入をしている例が非専門医の場合は多い。
病棟などではインスリンスライディングスケールという方法をとることがある。これは各食前の血糖値に基づいてその時にうつインスリンを決定するという方法であり、短期間ならば良いが血糖の変動を激しくするので避けたほうが良い。本来は食事摂取できない糖尿病患者の血糖コントロールで用いられたプロトコールである。以下に一例を示す。
血糖値(mg/dl) | 処置 |
---|---|
<70 | 50%ブドウ糖20ml静注、またはブドウ糖10g内服 |
70~150 | stay |
150~200 | R2単位皮下注 |
200~250 | R4単位皮下注 |
250~300 | R6単位皮下注 |
300~350 | R8単位皮下注 |
350~400 | R10単位皮下注 |
食事をしないIVHの患者では高カロリー輸液にRを混ぜることもある。この場合はグルコース10gにつきR1単位から始めて血糖を測定から至適量を決めていく。注意として速効型インスリン以外の静注は禁止である。
速効型インスリンまたは超速効型インスリンの皮下持続投与によってインスリンの血中濃度を一定に保ち低血糖や高血糖のリスクを軽減する治療である。大まかの治療目標を以下に纏める。()は緩めの目標である。
時間 | 血糖値(mg/dl) |
---|---|
食前 | 80~110(130) |
食後2時間 | 180(200)以下 |
就寝前 | 100~140 |
午前3時 | 90以上 |
CSIIでは強化インスリン療法(4回打ち)の時のインスリンの60~80%のインスリン量でコントロールできる場合が多い。基礎注入量と食前ボーラス量を決定する。基礎注入量が全体の40~50%を占め、残りが食前ボーラスとなることが多い。
糖尿病性ケトアシドーシス(DKA)や非ケトン性高浸透圧性昏睡(HHS)の場合、インスリンを投与することがある。生理食塩水で500~1000ml/hrの輸液を開始し、Rを10単位静注する。以後は0.1単位/kg/hrにて点滴静注する。血糖が250~300mg/dl、HCO3>18、pH>7.3になるまで続ける。インスリン投与にて低カリウム血症となるためカリウムを補充する必要がある。これはインスリンがカリウムを消費することと糖尿病性緊急症の時はアシドーシスがあるためカリウムが高めに測定されるということの二つの理由で説明できる。乳酸アシドーシスの場合も基本的な対応は同様であり、脱水の是正、高血糖を伴う場合は高血糖の是正を行う。
欠乏物質 | DKAでの欠乏量 | HHSでの欠乏量 |
---|---|---|
総水分 | 4~6l | 4~9l |
水分 | 100ml/Kg | 100~200ml/Kg |
Na | 7~10mEq/Kg | 5~13mEq/Kg |
Cl | 3~5mEq/Kg | 5~15mEq/Kg |
K | 3~5mEq/Kg | 4~6mEq/Kg |
PO4 | 5~7mmol/Kg | 3~7mmol/Kg |
Mg | 1~2mEq/Kg | 1~2mEq/Kg |
Ca | 1~2mEq/Kg | 1~2mEq/Kg |
ウィキメディア・コモンズには、インスリンに関連するメディアがあります。 |
日本語のサイト
英語のサイト
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
ヒューマリン3/7注カート
国試過去問 | 「110E062」「111B052」「104G066」「113C052」「111A055」「105D045」「110A025」「106E043」「112B049」「114D071」「109D046」「103E065」「112A057」「104I060」「107I067」「104I061」「104G045」「106D025」「096D026」「108B032」 |
リンク元 | 「血糖降下薬」「試験」「糖尿病」「ホルモン」「100Cases 75」 |
DE
※国試ナビ4※ [110E061]←[国試_110]→[110E063]
E
※国試ナビ4※ [111B051]←[国試_111]→[111B053]
AD
※国試ナビ4※ [104G065]←[国試_104]→[104G067]
C
※国試ナビ4※ [113C051]←[国試_113]→[113C053]
CD
※国試ナビ4※ [111A054]←[国試_111]→[111A056]
※国試ナビ4※ [105D044]←[国試_105]→[105D046]
C
※国試ナビ4※ [110A024]←[国試_110]→[110A026]
C
※国試ナビ4※ [106E042]←[国試_106]→[106E044]
E
※国試ナビ4※ [112B048]←[国試_112]→[112C001]
AC
※国試ナビ4※ [114D070]←[国試_114]→[114D072]
E
※国試ナビ4※ [109D045]←[国試_109]→[109D047]
BD
※国試ナビ4※ [103E064]←[国試_103]→[103E066]
A
※国試ナビ4※ [112A056]←[国試_112]→[112A058]
※国試ナビ4※ [104I059]←[国試_104]→[104I061]
E
※国試ナビ4※ [107I066]←[国試_107]→[107I068]
C
※国試ナビ4※ [104I060]←[国試_104]→[104I062]
A
※国試ナビ4※ [104G044]←[国試_104]→[104G046]
D
※国試ナビ4※ [106D024]←[国試_106]→[106D026]
C
※国試ナビ4※ [096D025]←[国試_096]→[096D027]
AC
※国試ナビ4※ [108B031]←[国試_108]→[108B033]
k氏より
インスリンの抽出は大変意図的に行われたのに対し、スルフォニルウレア薬(SU)は偶然に見つかりました。で、1950年代にはじめに二型糖尿病の患者に使われるようになりました。いまでは20種類くらいのSUが広く世界で使われています。 1997にはメグリチニドが臨床適用されました。食後高血糖の治療薬としてはじめて使用された薬です。 メタフォルミンというビグアナイド薬(BG)は、ヨーロッパで広く使われていましたが、1995年にアメリカでも認可されました。 チアゾリジン1997年に市場導入され、二番目にメジャーなインスリン刺激薬として使用されています。この種類の薬には、広汎な肝障害を起こしにくく、世界中で使われています。
膵臓のβ細胞の刺激によって、インスリンを放出させ、血糖値を下げます。 治療が長引くと、インスリン分泌というSUのβ細胞刺激性の効果が薄れてきますが、β細胞上のSU受容体のダウンレギュレーションによるものです。また、SUはソマトスタチンの放出を刺激します。ソマトスタチンはグルカゴン分泌を抑制しているので、これも関係SUの糖を下げる効果と関係しています。 SUはATP感受性Kチャンネルを抑制します。Kレベルが下がると、まく表面における、脱分極を促し、電位依存性カルシウムチャンネルを通じたカルシウムイオンの流入を促進します。 SUには無視できない膵臓外作用があるという議論があります。確かにありうべきことですが、2型糖尿病の患者の治療においては、それほど重要なことではないようです。
SU薬はそれぞれが似たような作用スペクトラムを持っているので、薬物動態的な特性がここの薬を区別する手がかりです。腸管からのSU薬の吸収の割合は薬によって違いますが、食物や、高血糖は、この吸収を抑制します。高血糖はそれ自身、腸管の運動を抑制するので、ほかの薬の吸収も阻害します。血漿濃度が効果的な値にまで達する時間を考えると、半減期の短いSUは、食前三十分に投与するのが適切です。SU薬は90から99パーセントくらい血中たんぱく質と結合し、特にアルブミンと結合します。 第一世代のSUは半減期や分布において、大きく違っています。この半減期や作用時間の不一致の理由はいまだはっきりしていません。 SUはすべて肝臓で代謝を受け、尿中に排泄されます。なので、肝不全、腎不全患者には要注意で処方します。
めったにありませんが、第一世代服用患者では、4パーセントの割合でおきます。第二世代ではもっと少ないでしょう。低血糖による昏睡がしばしば問題になります。腎不全や肝不全がある高齢者の患者でおきやすいです。 重症の低血糖は脳血管障害も起こしうる。急性の神経障害が見つかった高齢患者では血中グルコースレベルを測るのが大事です。半減期の長いSUもあるので、24から48時間のグルコースを輸液します。 第一世代は多くの薬物と相互作用を持っています。 ほかに、吐き気嘔吐、胆汁うっ滞性黄疸、脱顆粒球症、再生不良性・溶血性貧血、全身性のアレルギー症状があります。 SUが心血管障害による死亡率を上げるのかについては議論の余地あり。
SUは、食事療法だけでは十分なコントロールを得られない2型糖尿病患者の血糖コントロールに用いられます。禁忌はtype 1 DM(diabetes mellitus:糖尿病)、妊婦、授乳中の患者、腎障害や肝障害の患者です。 普通の患者なら五割から八割くらい、経口の糖尿病治療薬が効きます。インスリン療法が必要になる患者もいます。 トルブタマイドの一日量は500ミリグラムで、3000ミリグラムが最大の許容量です。SUの治療成績の評価は患者の様子を頻繁に観察しながら、行います。 SUとインスリンの併用療法はtype 1, type 2 両方の糖尿病で用いられていますが、βセルの残存能力がないとうまくいきません。
レパグリニドはメグリチニドクラスの経口インスリン分泌促進物質です。化学構造上、SUとは異なっており、安息香酸から分離されたものです。 SU薬と同様にレパグリニドは膵臓βセルにおけるATP依存性Kチャンネルを閉じることによりインスリン分泌を促進します。AEもSU薬と同様、低血糖です。
Dふぇにるアラニンから分離された薬。レパグリニドよりもSEとして低血糖が認められづらいです。
メトフォルミンとフェノフォルミンは1957年に市場導入され、ブフォルミンが1958年に導入されました。ブフォルミンは使用が制限されていますが、前者二つは広く使われています。フェノフォルミンは1970年代に乳酸アシドーシスのAEによって市場から姿を消しました。メトフォルミンはそのようなAEは少なく、ヨーロッパカナダで広く使われています。アメリカでは1995年に使用可能に。メトフォルミンは単独かSUと併用して使われます。
ものの言い方によると、メトフォルミンは抗高血糖であって、血糖を下げる薬ではありません。膵臓からのインスリン放出は促さないので、どんな大容量でも低血糖は起こしません。グルカゴン・コルチゾール・成長ホルモン・ソマトスタチンにも影響なし。肝での糖新生を抑制したり、筋や脂肪におけるインスリンの働きを増すことで、血糖を押さえます。
小腸から吸収。安定な構造で、血中の蛋白と結合しないで、そのまま尿中に排泄。半減期は二時間。2.5グラムを食事と一緒に飲むのがアメリカで最もお勧めの最大用量。
メトフォルミンは腎不全の患者には投与しないこと。肝障害や、乳酸アシドーシスの既往、薬物治療中の心不全、低酸素性の慢性肺疾患なども合併症として挙げられる。乳酸アシドーシスはしかしながら、めちゃくちゃまれである。1000人年(たとえば100人いたら、10年のうちにという意味の単位。または1000人いたら1年につき、ということ。)につき0.1という割合。 メトフォルミンの急性のAEは患者の20パーセントに見られ、下痢、腹部不快感、吐き気、金属の味、食欲不振などです。メタフォルミンを飲んでいる間はビタミンB12や葉酸のきゅうしゅうが 落ちています。カルシウムをサプリで取ると、ビタミンB12の吸収が改善されます。 血中乳酸濃度が3ミリMに達するとか、腎不全・肝不全の兆候が見られたら、メタフォルミンは中止しましょう。
PPARγに効く。(ペルオキシソーム・プロライファレーター・アクチベイティッド・受容体、つまりペルオキシソーム増殖活性受容体みたいな。)PPARγに結合して、インスリン反応性をまして、炭水化物とか、脂質の代謝を調整します。
ロジグリタゾンとピオグリタゾンは一日一度。チアゾリジンは肝にて代謝され、腎不全のある患者にも投与できますが、活動性の肝疾患があるときや肝臓のトランスアミナーゼが上昇しているときは、使用しないこと。 ロジグリタゾンはCYP2C8で代謝されますがピオグリタゾンはCYP3A4とCYP2C8で代謝されます。ほかの薬との相互作用や、チアゾリジン同士の相互作用はいまだ報告されていませんが、研究中です。
ピオグリタゾンとロジグリタゾンは肝毒性とはめったに関係しませんが、肝機能をモニターする必要があります。心不全のある患者はまずそちらを治療してから。
αGIは小腸の刷子縁におけるαグルコシダーゼの働きを阻害することによって、でんぷん・デキストリン・ダイサッカリダーゼの吸収を抑制します。 インスリンを増やす作用はないので、低血糖もおきません。吸収がよくない薬なので、食事の開始と一緒に飲むとよいです。 アカルボースとミグリトールは食後高血糖の抑制に使われます。 αGIは用量依存性に、消化不良・ガス膨満・下痢などをきたします。αGIとインスリンを併用中に低血糖症状が出たら、、グルコースを補充します。
経口から、グルコースが静脈を通ると、インスリンが上がることがわかっていました。消化管の上部からはGIP、消化管下部からはGLP1というホルモンが出ていて、糖依存性のインスリン放出を促していることがわかりました。これらのホルモンはインクレチンといわれています。この二つのホルモンは別の働き方でインスリンの放出を促進します。GIPはtype 2 DMではインスリン分泌を促進する能力がほとんど失われています。一方でGLP1は糖依存性のインスリン分泌を強く促しています。つまりtype 2 DMの治療ではGIPをターゲットにすればよいということになります。GLPはグルカゴンを抑制し。空腹感を押さえ、食欲を抑えます。体重減少も実現できます。この長所を相殺するように、GLP1は迅速にDPPIV(ヂペプチジルペプチダーゼ4エンザイム)によって負活化されます。つまり、GLP1を治療に使うなら、連続的に体に入れなければなりません。GLP1受容体のアゴニストが研究され、これはDPPIVにたいして抵抗性があります。 そのほかのGLP1療法のアプローチに仕方としては、DPPIVプロテアーゼの不活性化で、それによってGLP1の循環量を増やそうとするものです。type 2 DM治療に新しい薬がでるかもしれないですね。
糖尿病との関係 | 疾患 | 臨床的特徴 |
糖尿病が直接病因に関与する疾患 | 糖尿病性手関節症(diabetic cheiroarthropathy) | コントロール不良の糖尿病に多い。原因不明の皮膚硬化が徐々に進行し、手指の屈曲拘縮を来し手全体に及び、強皮症と誤診される。手指を合わせることができない(Prayer徴候)。 |
シャルコー関節 | 頻度は低い(1%)が、長期糖尿病コントロール不良患者に多い。通常、足根中足関節などの中足部が多く、足底表面、前足部、中足部に潰瘍形成の合併を認めることがあり、骨髄炎との鑑別が困難な例あり。 | |
糖尿病性骨溶解(diabetic osteolysis) | 原因不明の足趾の末節骨や基節骨の骨吸収が起こリ、足痛の原因となる。X線ではickedcandy変形を呈し、骨髄炎との鑑別が困難。 | |
糖尿病性筋梗塞 | 外傷、感染、腫瘍がなく大腿部などに急激に増大する疼痛を伴う腫瘤を認める。生検は出血の危険があるため行わない。通常1~2カ月で自然寛解する | |
糖尿病性筋萎縮症(diabetic amyotrophy) | 糖尿病性末梢神経障害の一型。大腿前部の痛みで、時に脱力や萎縮が非対称性に起きる。CPKの上昇はなく、脳脊髄液で軽度蛋白上昇以外の有意な所見はない。神経伝導速度.筋電図では神経原性変化を認め、筋生検では炎症細胞浸潤を伴わない筋線経の萎縮あり。 | |
直接の関係は不明だが糖尿病患者に頻度が高い疾患 | 癒着性関節包炎(凍結肩または五十肩) | 糖尿病患者の10-33%にみられる。長期2型糖尿病を有する女性に多く、肩の痛みと可動域障害を呈する。約半数が両側性だが非利き手側で症状が強い。炎症反応やX線異常を認めず、数週~数カ月で自然寛解する。 |
複合性局所疼痛症候群1型(complex regional pain syndrome CRPS) | 四肢の疼痛、皮膚色変化、皮膚温の変化、浮腫、可動域制限などの症候を呈するまれな症候群。 | |
手掌屈筋鍵炎 | 糖尿病患者の5-33%に認められる。長期に罹患した女性に多く、利き手側の母指に頻度(75%)が高いが、どの指にもみられる。 | |
Dupuytren拘縮 | 手掌筋膜の短縮と肥厚(有痛性結節)を生じ、第4、5指の屈曲拘縮を呈する。1型糖尿病で長期に罹患した患者に多いが、血糖コントロールとの関係はない。 | |
手根管症候群 | 手根管症候群の全患者の最大15%に糖尿病を認める。 | |
広汎性特発性骨増殖症(diffuse idiopathic skeletal hyperostosis DISH) | 2型糖尿病患者の約20%にみられ、50才以上の肥満患者に多い。頭部、腰部のこわばリ、関節の可動域制限を呈する。全身の腱付着部痛を呈することもある。 | |
その他 | 感染性関節炎や骨髄炎 | 血糖上昇による免疫力低下が感染症リスクを上昇させることによる |
正常 糖尿病型 空腹時血糖値 <110mg/dL ≧126mg/dL and or 75g OGTT2時間値 <140mg/dL ≧200mg/dL
.