カルシウム
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/05/20 10:31:31」(JST)
[Wiki ja表示]
|
外見 |
銀白色、金属光沢の固体
カルシウムのスペクトル線 |
一般特性 |
名称, 記号, 番号 |
カルシウム, Ca, 20 |
分類 |
アルカリ土類金属 |
族, 周期, ブロック |
2, 4, s |
原子量 |
40.078 |
電子配置 |
[Ar] 4s2 |
電子殻 |
2, 8, 8, 2(画像) |
物理特性 |
相 |
固体 |
密度(室温付近) |
1.550 g/cm3 |
融点での液体密度 |
1.378 g/cm3 |
融点 |
1115 K, 842 °C, 1548 °F |
沸点 |
1757 K, 1484 °C, 2703 °F |
融解熱 |
8.54 kJ/mol |
蒸発熱 |
154.7 kJ/mol |
熱容量 |
(25 °C) 25.929 J/(mol·K) |
蒸気圧 |
圧力 (Pa) |
1 |
10 |
100 |
1 k |
10 k |
100 k |
温度 (K) |
864 |
956 |
1071 |
1227 |
1443 |
1755 |
|
原子特性 |
酸化数 |
2, 1
(強塩基性酸化物) |
電気陰性度 |
1.00(ポーリングの値) |
イオン化エネルギー
(詳細) |
第1: 589.8 kJ/mol |
第2: 1145.4 kJ/mol |
第3: 4912.4 kJ/mol |
原子半径 |
197 pm |
共有結合半径 |
176±10 pm |
ファンデルワールス半径 |
231 pm |
その他 |
結晶構造 |
面心立方格子構造 |
磁性 |
反磁性 |
電気抵抗率 |
(20 °C) 33.6 nΩ·m |
熱伝導率 |
(300 K) 201 W/(m·K) |
熱膨張率 |
(25 °C) 22.3 µm/(m·K) |
音の伝わる速さ
(微細ロッド) |
(r.t.) 3810 m/s |
ヤング率 |
20 GPa |
剛性率 |
7.4 GPa |
体積弾性率 |
17 GPa |
ポアソン比 |
0.31 |
モース硬度 |
1.75 |
ブリネル硬度 |
167 MPa |
CAS登録番号 |
7440-70-2 |
最安定同位体 |
詳細はカルシウムの同位体を参照 |
同位体 |
NA |
半減期 |
DM |
DE (MeV) |
DP |
40Ca |
96.941 % |
中性子20個で安定 |
42Ca |
0.647 % |
中性子22個で安定 |
43Ca |
0.135 % |
中性子23個で安定 |
44Ca |
2.086 % |
中性子24個で安定 |
|
表示
|
カルシウム(新ラテン語: calcium[1]、英: calcium)は原子番号 20、原子量 40.08 の金属元素である。元素記号は Ca。第2族元素に属し、アルカリ土類金属の一種で、ヒトを含む動物や植物の代表的なミネラル(必須元素)である。日本(主に保健分野)では、特定の商標にちなんで「カルシューム」と転訛することがある。
目次
- 1 性質
- 2 歴史
- 3 用途
- 3.1 建設・建築
- 3.2 工業
- 3.3 食品工業、家庭用品ほか
- 3.4 農業畜産
- 4 カルシウムの化合物
- 5 同位体
- 6 環境における循環
- 7 生化学
- 7.1 生理作用
- 7.2 薬理作用
- 7.3 疫学
- 7.4 癌との関わり
- 8 脚注
- 9 関連項目
- 10 外部リンク
性質
酸化数は僅かな例外を除き、常に+IIとなる。比重1.55の非常に柔らかい金属で、融点は840-850 ℃、沸点は1480-1490 ℃(異なる実験値あり)。標準状態での結晶構造は面心立方格子構造 。
単体を空気中で放置すると酸素・水・二酸化炭素と反応して腐食するため、不活性ガスを充填した状態で販売される。鉱油中で保存することもある。
空気中で加熱すると炎をあげて燃焼する。
- 2Ca + O2 → 2CaO
水に加えると容易に反応して水素を発生する。生成した水酸化カルシウム水溶液は石灰水と呼ぶ。
- Ca + 2H2O → Ca(OH)2 + H2
石灰水に二酸化炭素を通すと炭酸カルシウムの白い沈殿を生じる。
- Ca(OH)2 + CO2 → CaCO3↓ + H2O
この状態から過剰に二酸化炭素を加えると沈殿は溶けて溶液となる。この反応は可逆的であり、加熱すると再び炭酸カルシウムの沈殿を生じる。
- CaCO3 + CO2 + H2O → Ca(HCO3)2
ハロゲンとは気相中で直接反応し、ハロゲン化物を生成する。
アルコールに溶解してカルシウムアルコキシド (C2H5OCa)、液体アンモニアに溶解してヘキサアンミンカルシウム ([Ca(NH3)6]2+) となる。
水と容易に反応して水素を発生するため、アルカリ土類金属として、危険物第3類(禁水性物質)に指定されている。
歴史
カルシウムは古代ローマ時代からカルックス (calx) という名前で知られ、化学的な性質を化合物の形で利用されていた[2]。ラボアジエの33元素にもライム(酸化カルシウム)が含まれている。
石灰(炭酸カルシウム)を主成分とする石灰岩や大理石は耐久性と加工性のバランスがよく、ピラミッドやパルテノン神殿などで石材として利用されている。しかし、カルシウムの化学的性質を活用した最初の例としてはセメントの発明をあげるべきだろう。
人類最初のセメントとして9000年前のイスラエルで使われていた「気硬性セメント」が知られている[3]。これは、砕いた石灰岩を熱して酸化カルシウムを生成させ、施工後にこれが空気中の水分や炭酸ガスと反応して炭酸カルシウムとなる事を利用して硬化させる。
現在に近い水を加え水酸化カルシウムを生成させる「水硬性セメント」は、5000年前の中国や4000年前の古代ローマで利用され、同じ頃にピラミッド建設には焼石膏(硫酸カルシウム)の水和反応を利用する漆喰(註:日本の漆喰とは異なる)が用いられた。
この様にカルシウムは広く利用され身近な物質だったが、金属として単離するには電気分解の登場を待つ必要があった。 1808年、ハンフリー・デービーが生石灰を酸化水銀とともに溶融電解し、金属カルシウムを得ることに成功した。calcium の名は、石を意味するラテン語の calx から転じ石灰を意味した calcsis に由来する[4]。
ちなみに、優れた実験化学者でもあったラボアジエが著作『化学原論』で近代元素観を確立したのは1789年で、11年後に電気分解が発明された時にはフランス革命により処刑された後だった。
用途
セメント・モルタルなど、建設・建築用資材として多用され、現在でも使用量の大部分をコンクリート製品が占める。日本の生コン生産量は、ピーク時(1990年)には約2億立方メートルに達している。 多くの用途があるが、金属元素としての需要はマグネシウムに劣る。
建設・建築
- セメント
- 日本は石灰岩資源が豊かで、自給自足し輸出もしてきたが、近年は減少傾向で2009年度生産量は5千8百万トンと、ピーク時の半分程度となっている。生産量の4分の3をポルトランドセメントが占め、残りの大部分は高炉セメントである。
- 石材、窓材、彫刻
- 白い大理石や、透明度の高い石膏が好んで利用される。
- 漆喰
- 消石灰や苦灰石を固化剤とする。
- モルタル
- 主に細骨材セメントが用いられる。
- 断熱材、保温材
- ケイ酸カルシウムを発泡させたもので耐火性を持ち、アスベスト代替品として用いられる。
工業
- 精錬
- 酸素と結びつきやすい性質から、古来より蛍石(フッ化カルシウム)が融剤として銅の精錬に用いられた。
- 製鉄、製鋼
- 日本の生石灰生産量の半分を消費する。高炉の不純物除去剤として、鉄鉱石やコークスとともに投入され、シリカ、アルミナとスラグ(ケイ酸カルシウムアルミニウム)をつくり銑鉄から分離する。また、造粒強化、熱効率改善、窒素酸化物削減効果を持つ。転炉では主にリン、硫黄の除去と温度調整効果をもつほか、高級鋼の炉外精錬に用いる[5]。
- 非鉄金属鉱業
- 還元剤としてチタン[6]や希土類(還元拡散法)[7]、ウランやプルトニウム[8]、セシウムの精錬に用いられる。
- 酸化物陰極
- 仕事関数が小さい熱陰極(真空管、ブラウン管、蛍光ランプなど)材料として、バリウム、ストロンチウムとともに三元酸化物として1950年頃に用いられた[9]。
- 合金添加剤
- マグネシウム合金に0.25 %添加すると、耐熱性が200-300 °C高い難燃性合金となる。
- るつぼ、耐火材
- 多孔質のカルシア(酸化カルシウム)は2000 °Cまで使用でき、触媒作用・吸収・汚染が少ない。
- 化学工業
- 安価で安全なアルカリ剤として欠かせない。主に消石灰(水酸化カルシウム)の石灰乳(水でスラリー状にしたもの)が用いられる。
- マグネシア(酸化マグネシウム)製造
- 消石灰により海水中の塩化マグネシウムを複分解回収する(主に日本)。
- ソーダ灰(炭酸ナトリウム)製造
- 循環アンモニアの回収剤および塩化物イオンの吸収剤として使用する。
- エポキシ樹脂製造
- 原料のプロピレンオキサイドやエピクロルヒドリンの製造で、ケン化、中和、加熱を同時に進行させる。
- カルシウムカーバイド(炭化カルシウム)
- アセチレン製造に必要で、高温電気炉で石灰とコークスを強熱して製造される。
- さらし粉(次亜塩素酸カルシウム)
- 生石灰に塩素を吸収させ、比較的安定で安価な消毒剤として広く使われている。
- パルプ工業
- 蒸解に使用した苛性ソーダ廃液(リグニンを含む黒液)を、燃焼分解して炭酸ナトリウム溶液とし、生石灰で再生する。
- ガラス製造
- ソーダ石灰ガラスの原料として、ナトリウム、ケイ素、カルシウムの酸化物が用いられる。
- 排水処理
- 無機酸性排水の中和に多用されるほか、フッ素、リン、重金属の除去に使用される。
- 排ガス処理
- 火力発電所で硫黄酸化物吸収剤として排煙脱硫に利用され、副生する硫酸カルシウムは、原料石膏となる。
- ゴミ焼却炉
- 炉などを腐食する塩化水素が大量に発生するため、生石灰、消石灰の粉末を吸収剤として煙道へ吹き込む。
食品工業、家庭用品ほか
- 製糖
- 消石灰を粗糖溶液に加え炭酸ガスを吹き込み、炭酸カルシウムの吸着・凝集沈殿効果で精製する。
- 食品添加物
- コンニャクの凝固剤、栄養強化剤として用いられる。
- 乾燥剤
- 無水物の水和反応を利用し、酸化カルシウムや塩化カルシウムが用いられた。能力はシリカゲルに劣るが、押入れの湿気取りなどで利用される。
- 発熱剤
- 酸化カルシウムの水和(発熱反応)を、携帯食品(弁当や飲み物など)を加熱する手段として用いる。
- 融雪剤
- 塩カル(塩化カルシウム)による溶解熱、凝固点降下を利用している。
- 学校用品
- チョーク、ライン材(グラウンドの白線用消石灰)など。
- 入浴剤
- 湯を白濁させたりアルカリ性にして肌触りを変化させるため、炭酸カルシウムが利用される。
- 研磨剤
- 炭酸カルシウムが歯磨き粉や消しゴムなどに用いられる。
農業畜産
- 農薬
- ボルドー液、石灰硫黄合剤、石灰防除などに使われる。
- 無機肥料
- 苦土石灰、過リン酸石灰、硝酸カルシウムなどのほか、連作障害対策の土壌中和・殺菌兼用で生石灰、消石灰が使用される。
- 飼料
- 家畜の栄養保健剤。
カルシウムの化合物
無機塩
- 酸化カルシウム (CaO) - 生石灰
- 過酸化カルシウム (CaO2)
- 水酸化カルシウム (Ca(OH)2) - 消石灰
- フッ化カルシウム (CaF2) - 蛍石
- 塩化カルシウム (CaCl2•2H2O) - 塩カル
- 臭化カルシウム (CaBr2•2H2O)
- ヨウ化カルシウム (CaI2•3H2O)
- 水素化カルシウム (CaH2)
- 炭化カルシウム (CaC2) - カルシウムカーバイド
- リン化カルシウム (Ca3P2 など)
オキソ酸塩
- 炭酸カルシウム (CaCO3) - 石灰石
- 炭酸水素カルシウム (Ca(HCO3)2)
- 硝酸カルシウム (Ca(NO3)2•4H2O)
- 硫酸カルシウム (CaSO4•2H2O) - 石膏
- 亜硫酸カルシウム (CaSO3)
- ケイ酸カルシウム (CaSiO3 または Ca2SiO4)
- リン酸カルシウム (Ca3(PO4)2)
- ピロリン酸カルシウム (Ca2O7P2)
- 次亜塩素酸カルシウム (Ca[ClO]2) - さらし粉
- 塩素酸カルシウム (Ca(ClO3)2)
- 過塩素酸カルシウム (Ca(ClO4)2)
- 臭素酸カルシウム (Ca(BrO3)2)
- ヨウ素酸カルシウム (Ca(IO3)2•H2O)
- 亜ヒ酸カルシウム (Ca3(AsO4)2)
- クロム酸カルシウム (CaCrO4)
- タングステン酸カルシウム (CaWO4) - 灰重石
- モリブデン酸カルシウム (CaMoO4) - パウエル石
- 炭酸カルシウムマグネシウム (CaMg(CO3)2) - 苦灰石
- ハイドロキシアパタイト (Ca5(PO4)3(OH) または Ca10(PO4)6(OH)2) - 水酸燐灰石
有機塩
- 酢酸カルシウム (Ca(CH3COO)2)
- グルコン酸カルシウム (C12H22CaO14)
- 乳酸カルシウム (C6H10CaO6)
- 安息香酸カルシウム (C14H10CaO4)
- ステアリン酸カルシウム (Ca(C17H35COO)2)
同位体
詳細は「カルシウムの同位体」を参照
カルシウムの原子番号20番は陽子の魔法数であり、安定同位体が4種と多い。さらに、中性子も魔法数である二重魔法数の同位体を2つ (40Ca, 48Ca) 持っている。40Ca は安定核種の列から外れた位置にあるにも関わらず、天然存在率が約97 %と著しく高い。一方の 48Ca も周囲を短寿命核種に囲まれながら、半減期430京年と極端に安定していて、存在率も 46Ca の数十倍である。
環境における循環
カルシウムは古典的なクラーク数で、第5位に位置し、地殻中の存在率は3.39 %とされていた。現在は地球温暖化の主要因となる二酸化炭素を、炭酸カルシウムとして封じ込める役を持つとして関心が高まっている。
石灰岩の成因は、無生物的に海水中のイオン反応のほか、サンゴ虫が形成する外骨格に由来するサンゴ礁の寄与が大きいと考えられている。石灰岩中の二酸化炭素は、自然界では火山による熱変成作用や鍾乳洞でみられるような溶出により大気中に放出されるが、炭酸水素イオンとして水系に取り込まれやすいため、短期間でカルシウムやマグネシウムなどと難溶性塩を生成し、再び固定される。[要出典]
生化学
カルシウムは真核細胞生物にとって必須元素であり、植物にとっても肥料として必要である。
生理作用
人体の構成成分としてのカルシウムは、成人男性の場合で約1 kgを占める。主に骨や歯としてヒドロキシアパタイト Ca5(PO4)3(OH) の形で存在する。
生体内のカルシウムは、遊離型・タンパク質結合型・沈着型で存在する。ヒトをはじめとする脊椎動物では、主に骨質として大量の沈着型がストックされているが、細胞内のカルシウムイオンは外より極端に濃度が低く、その差は3桁に達する。同様の濃度差はカリウムとナトリウムでも見られるが、カルシウムでは細胞内濃度が厳密に保たれている。これは、真核細胞内の情報伝達を担うカルシウムシグナリングのためと考えられていて、細胞膜にカルシウムイオンを排出するカルシウムチャネルが備えられている。[要出典]
筋肉細胞では、収縮に関わるタンパク質(トロポニン)に結合することが不可欠である[10]。カルシウムイオンは細胞内液には殆ど存在せず、細胞外からのカルシウムイオンの流入や、細胞内の小胞体に蓄えられたカルシウムイオンの放出は、様々なシグナルとしての生理的機能がある。[要出典]
植物細胞では、乾燥重あたり1.8%程度のカルシウムを含む。植物においてカルシウムはイオンとして存在し、主に細胞壁、細胞膜外、液胞、小胞体に多く分布する一方、サイトゾル内の濃度は低く保たれている。 植物細胞におけるカルシウムの生理作用は以下の4点である。[11]
- 細胞壁の安定化
- 細胞膜の安定化
- 染色体の構造維持
- 二次メッセンジャーとして細胞内の情報伝達
薬理作用
カルシウムは便や尿として体外に排泄されるため、これを補う最低必要摂取量として、日本の厚生労働省は1日に700mg(骨粗鬆症予防には800 mgを推奨)をあげている[12]。
いくつかの症状に対し、医薬品として処方されることがある。定番となっている胃の制酸薬以外にも、カルシウム欠乏による筋肉の痙攣、くる病、骨軟化症、低カルシウム血症、骨粗鬆症の治療に、主に経口摂取で用いるほか、血液中のリン酸濃度を抑制したい場合に用いる。また、栄養補助食品も広く販売されており、病気治療で食事制限中だったり、重度の骨粗鬆症で大量摂取したいとき、食事量が落ちた高齢者などで効果が期待できる。[要出典]
健常者では体液内濃度は平衡に保たれ、妊娠期の女性も食物からの吸収能力が自然に増すため、偏った食生活でなければ追加摂取は必要ない[13]。一方、過剰摂取は高カルシウム血症や腎結石、ミルクアルカリ症候群の原因となるため、一日摂取許容量上限として2300 mgが示されている。
俗説に、カルシウムが不足すると血液中の濃度が低下し、イライラなど精神不安定の原因になるとされる。しかし血液中の量は約0.5 g(成人男性の場合。濃度10mg/dL、血液量5kgとして)とわずかで、人体の成分として不足する事はなく、イライラの原因候補は無数に存在する[要出典]。もし血中濃度が正常範囲を外れているならば、骨からの出し入れ量を調節する副甲状腺機能の異常などが疑われる[14]。
疫学
カルシウムは必須元素として以上の効果を期待され、幾つもの疫学調査が行われている。
- 低カルシウム血症
- くる病・骨軟化症
- 制酸剤
- 閉経前後の骨量減少
- 胎児の骨成長・骨密度増加(註:リバウンドを含め、出生後の追跡調査例見つからず)
- 上皮小体亢進症(慢性腎機能障害患者)
- 骨粗鬆症、骨密度減少(ステロイドの長期間服用者でビタミンD併用時)
- 高齢者における歯の損失
- 歯へのフッ素の過剰沈着(小児でビタミンC・D併用)
- 虚血性発作
- 血圧減少(腎疾患末期)
- 高血圧、子癇前症での血圧減少(カルシウム摂取不足の妊婦)
- 直腸上皮の異常増殖、下痢(腸管バイパス手術を受けた人)
- 妊娠中のこむらがえり
- 骨粗鬆症診療ガイドラインでは、カルシウムのサプリメントの摂取は骨密度を2 %増やすが骨折率には変化がないので、すすめられる根拠がない(グレードC)に分類される[16]。
- 加齢による骨の減少を遅くする効果 ハーバード大学の公衆疫学部によれば、十分なカルシウムを摂取することで効果があるが、乳製品がもっとも良い選択かは明らかではないとする。乳製品以外のカルシウムの摂取源として コラード、チンゲンサイ、豆乳、ベイクドビーンズ が挙げられている[17]。
- ビタミンDは、小腸の腸細胞の柔もうを通じてカルシウムを吸収する際にカルシウム結合タンパクの量を増加させるカルシウム吸収の要因として重要である。ビタミンDは、腎臓において尿からカルシウムが損失することを抑制する[18]。
癌との関わり
- 2つの無作為化比較試験[19][20]の国際コクラン共同計画によるメタ分析[21]によると、カルシウムは大腸腺腫性ポリープをある程度抑制し得るかもしれないことが発見された。
- 最近の研究結果は矛盾したものであるが、1つはビタミンDの抗癌効果について肯定的なものであり(Lappeほか)、癌のリスクに対してカルシウムのみから独立した肯定的作用を行っているとしたものである(以下の2番目の研究を参照のこと)[22]。
- ある無作為化比較試験は、1000 mgのカルシウム成分と400 IUのビタミンD3は大腸癌に何も効果を示さなかった[23]。
- ある無作為化比較試験は、1400-1500 mgのカルシウムサプリメントと1100 IUのビタミンD3が塊状の癌の相対的リスクを0.402まで低下させることを示した[24]。
- ある疫学的研究では、高容量のカルシウムとビタミンDの摂取は更年期前の乳癌の発生リスクを低めていることが発見された[25]。
- 日本の国立がん研究センターが4万3000人を追跡した大規模調査では、乳製品の摂取が前立腺癌のリスクを上げることを示し、カルシウムや飽和脂肪酸の摂取が前立腺癌のリスクをやや上げることを示した[26]。
脚注
- ^ http://www.encyclo.co.uk/webster/C/7
- ^ 桜井 弘 『元素111の新知識』 講談社、1998年、118頁。ISBN 4-06-257192-7。
- ^ セメントの歴史コンクリートの世界
- ^ 元素を知る事典~先端材料への入門~,村上雅人 編著,
- ^ 鋼を作る日本石灰協会・日本石灰工業組合
- ^ [1]
- ^ 還元拡散法による希土類機能性材料の製造に関する基礎的研究科学研究費補助金データベース
- ^ 緻密なウラニウム精錬用弗化カルシウム容器NII論文情報ナビゲータ
- ^ 酸化物陰極を備えた真空管ekouhou.net
- ^ 筋収縮を調節する分子メカニズムの一端を解明 科学技術振興機構
- ^ 間藤徹, 馬建鋒, 藤原徹 編 『植物栄養学 第2版』, 文永堂, 2010
- ^ 骨粗鬆症予防のための食品栄養成分ノート国立病院機構
- ^ 妊産婦のための食生活指針 (厚生労働省)
- ^ カルシウムが高い時日本臨床検査専門医会
- ^ 「健康食品」の安全性・有効性情報国立健康・栄養研究所
- ^ 『骨粗鬆症の予防と治療ガイドライン2006年版』 骨粗鬆症の予防と治療ガイドライン作成委員会、ライフサイエンス出版。2006年10月。ISBN 978-4-89775-228-0。34-35、77頁。
- ^ The Nutrition Source Calcium and Milk: What's Best for Your Bones? (Harvard School of Public Health)
- ^ en:Calcium in biology
- ^ Baron JA, Beach M, Mandel JS (1999). “Calcium supplements for the prevention of colorectal adenomas. Calcium Polyp Prevention Study Group”. N. Engl. J. Med. 340 (2): 101–7. doi:10.1056/NEJM199901143400204. PMID 9887161.
- ^ Bonithon-Kopp C, Kronborg O, Giacosa A, Räth U, Faivre J (2000). “Calcium and fibre supplementation in prevention of colorectal adenoma recurrence: a randomised intervention trial. European Cancer Prevention Organisation Study Group”. Lancet 356 (9238): 1300–6. doi:10.1016/S0140-6736(00)02813-0. PMID 11073017.
- ^ Weingarten MA, Zalmanovici A, Yaphe J (2005). “Dietary calcium supplementation for preventing colorectal cancer, adenomatous polyps and calcium metabolisism disorder.”. Cochrane database of systematic reviews (Online) (3): CD003548. doi:10.1002/14651858.CD003548.pub3. PMID 16034903.
- ^ Lappe, Jm; Travers-Gustafson, D; Davies, Km; Recker, Rr; Heaney, Rp (2007). “Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial” (Free full text). The American journal of clinical nutrition 85 (6): 1586–91. PMID 17556697.
- ^ Wactawski-Wende J, Kotchen JM, Anderson GL (2006). “Calcium plus vitamin D supplementation and the risk of colorectal cancer”. N. Engl. J. Med. 354 (7): 684–96. doi:10.1056/NEJMoa055222. PMID 16481636.
- ^ Lappe JM, Travers-Gustafson D, Davies KM, Recker RR, Heaney RP (2007). “Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial”. Am. J. Clin. Nutr. 85 (6): 1586–91. PMID 17556697.
- ^ Lin J, Manson JE, Lee IM, Cook NR, Buring JE, Zhang SM (2007). “Intakes of calcium and vitamin d and breast cancer risk in women”. Arch. Intern. Med. 167 (10): 1050–9. doi:10.1001/archinte.167.10.1050. PMID 17533208.
- ^ 乳製品、飽和脂肪酸、カルシウム摂取量と前立腺がんとの関連について―概要― PMID 18398033
関連項目
|
ウィキメディア・コモンズには、カルシウムに関連するメディアがあります。 |
外部リンク
- カルシウム解説 - 「健康食品」の安全性・有効性情報(国立健康・栄養研究所)
- カルシウム - 脳科学辞典
周期表(未発見元素を含む) |
|
1 |
2 |
|
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18
|
1 |
H |
|
He |
2 |
Li |
Be |
|
B |
C |
N |
O |
F |
Ne |
3 |
Na |
Mg |
|
Al |
Si |
P |
S |
Cl |
Ar |
4 |
K |
Ca |
|
Sc |
Ti |
V |
Cr |
Mn |
Fe |
Co |
Ni |
Cu |
Zn |
Ga |
Ge |
As |
Se |
Br |
Kr |
5 |
Rb |
Sr |
|
Y |
Zr |
Nb |
Mo |
Tc |
Ru |
Rh |
Pd |
Ag |
Cd |
In |
Sn |
Sb |
Te |
I |
Xe |
6 |
Cs |
Ba |
La |
Ce |
Pr |
Nd |
Pm |
Sm |
Eu |
Gd |
Tb |
Dy |
Ho |
Er |
Tm |
Yb |
Lu |
Hf |
Ta |
W |
Re |
Os |
Ir |
Pt |
Au |
Hg |
Tl |
Pb |
Bi |
Po |
At |
Rn |
7 |
Fr |
Ra |
Ac |
Th |
Pa |
U |
Np |
Pu |
Am |
Cm |
Bk |
Cf |
Es |
Fm |
Md |
No |
Lr |
Rf |
Db |
Sg |
Bh |
Hs |
Mt |
Ds |
Rg |
Cn |
Uut |
Fl |
Uup |
Lv |
Uus |
Uuo |
アルカリ金属 |
アルカリ土類金属 |
ランタノイド |
アクチノイド |
遷移金属 |
その他の金属 |
半金属元素 (半導体元素) |
その他の非金属 |
ハロゲン |
希ガス |
不明 |
|
カルシウムの化合物 |
|
二元化合物 |
Ca3As2 · CaB6 · CaBr2 · CaC2 · CaCl · CaCl2 · CaF2 · CaH2 · CaI2 · Ca(N3)2 · Ca3N2 · CaO · CaO2 · CaP · Ca3P2 · CaS · CaSe · CaSi · CaSi2 · CaTe
|
|
三元化合物 |
Ca(AlO2)2 · Ca3(AsO4)2 · Ca3(BO3)2 · Ca(BrO3)2 · Ca(ClO)2 · Ca(ClO3)2 · Ca(ClO4)2 · CaCN2 · Ca(CN)2 · CaCO3 · CaC2O4 · CaCrO4 · CaCr2O7 · Ca(IO3)2 · Ca(MnO4)2 · Ca(NO2)2 · Ca(NO3)2 · Ca(OH)2 · Ca2P2O7 · Ca3(PO4)2 · CaSeO4 · CaSiO3 · CaSO3 · CaSO4 · CaTiO3
|
|
四元・五元化合物 |
Ca(CH3COO)2 · Ca(HCO3)2 · Ca(HCOO)2 · CaHPO4 · Ca(H2PO4)2 · Ca(HSO3)2 · Ca(HSO4)2 · Ca(OCN)2 · Ca(SCN)2 · CaCl(OH)2 ·
|
|
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
Japanese Journal
- 加圧二酸化炭素によるCaO-SiO₂,CaO-Fe₂O₃系カルシウム複合酸化物からのカルシウムイオンの抽出特性
- 松井 俊介,赤塚 拓紀,窪田 光宏 [他]
- Journal of the Society of Inorganic Materials, Japan : セッコウ・石灰・セメント・地球環境の科学 22(376), 143-148, 2015-05
- NAID 40020466681
- ブタ冠状動脈において血管平滑筋弛緩作用を有する新規の魚類由来ペプチド
- 木村 友彦
- 山口医学 = Yamaguchi medical journal 64(2), 101-107, 2015-05
- … タ冠状動脈平滑筋条片を濃度依存性に弛緩させた.さらに,ペプチド長に応じて血管弛緩作用も増強したため,最長のVGPGGを認識する新規の受容体の関与が示唆された.また,この弛緩は,血管平滑筋の細胞質カルシウムイオン濃度([Ca^<2+>]i)の低下を伴わなかったため,平滑筋収縮のCa^<2+>感受性の低下によるものと考えられた.FDPFsは強力かつ持続的な血管弛緩作用を有していたことから,血管病を予防する有望な食品成分 …
- NAID 120005617810
- 加圧二酸化炭素による製鋼スラグからのカルシウムイオンの抽出特性
- 松井 俊介,赤塚 拓紀,窪田 光宏 [他]
- Journal of the Society of Inorganic Materials, Japan : セッコウ・石灰・セメント・地球環境の科学 22(374), 24-30, 2015-01
- NAID 40020312282
Related Links
- 体にとって重要なミネラルであるカルシウムを効率よく吸収できる水溶性カルシウムについて、イラストを交えてわかりやすく紹介します。 ... 『カルシウム イオン.com』では、体にとって重要なミネラルであるカルシウムを効率よく ...
- 楽天市場-「カルシウム イオン」検索結果です。楽天市場は、セールや送料無料など取扱商品数が日本最大級のインターネット通販サイト・オンラインショッピングコミュニティです。(標準順 写真付き一覧)
Related Pictures
Japan Pharmaceutical Reference
薬効分類名
販売名
ダイアニールPD-2 4.25腹膜透析液
組成
成分・分量(w/v%)
- 成分 化学式 分量
ブドウ糖 C6H12O6 3.86
塩化ナトリウム NaCl 0.538
乳酸ナトリウム C3H5NaO3 0.448
塩化カルシウム CaCl2・2H2O 0.0257
塩化マグネシウム MgCl2・6H2O 0.00508
電解質濃度
- 電解質 化学式 濃度(mEq/L)
ナトリウムイオン Na+ 132
カルシウムイオン Ca2+ 3.5
マグネシウムイオン Mg2+ 0.5
塩素イオン Cl− 96
乳酸イオン C3H5O3− 40
禁忌
- 横隔膜欠損のある患者[胸腔へ移行し、呼吸困難が誘発されるおそれがある]
- 腹部に挫滅傷又は熱傷のある患者[挫滅又は熱傷の治癒を妨げるおそれがある]
- 高度の腹膜癒着のある患者[腹膜の透過効率が低下しているため]
- 尿毒症に起因する以外の出血性素因のある患者[出血により蛋白喪失が亢進し、全身状態が悪化するおそれがある]
- 乳酸代謝障害の疑いのある患者[乳酸アシドーシスが誘発されるおそれがある]
効能または効果
- 慢性腎不全患者における腹膜透析(高マグネシウム血症や代謝性アシドーシスの改善が不十分な場合に用いる)。
- ダイアニール-N PD-2 1.5腹膜透析液、2.5腹膜透析液、ダイアニールPD-2 4.25腹膜透析液及びダイアニール-N PD-4 1.5腹膜透析液、2.5腹膜透析液、ダイアニールPD-4 4.25腹膜透析液は、各々次のような場合に使用すること。
ダイアニール-N PD-2 1.5腹膜透析液、2.5腹膜透析液、ダイアニールPD-2 4.25腹膜透析液
- 高マグネシウム血症や代謝性アシドーシスの改善が不十分な場合
ダイアニール-N PD-4 1.5腹膜透析液、2.5腹膜透析液、ダイアニールPD-4 4.25腹膜透析液
- 高マグネシウム血症や代謝性アシドーシスの改善が不十分で、かつ炭酸カルシウム製剤や活性型ビタミンD製剤の投与により高カルシウム血症をきたすおそれのある場合
- 腹腔内に注入し、透析治療を目的とした液として使用する。通常、成人では1回1.5〜2Lを腹腔内に注入し、4〜8時間滞液し、効果期待後に排液除去する。以上の操作を1回とし、体液の過剰が1kg/日以下の場合、通常1日あたりダイアニール-N PD-2 1.5腹膜透析液のみ3〜4回の連続操作を継続して行う。体液の過剰が1kg/日以上認められる場合、通常ダイアニール-N PD-2 2.5腹膜透析液を1〜4回、またはダイアニールPD-2 4.25腹膜透析液を1〜2回処方し、ダイアニール-N PD-2 1.5腹膜透析液と組合せて1日あたり3〜5回の連続操作を継続して行う。なお、注入量、滞液時間、操作回数は症状、血液生化学値及び体液の平衡異常、年齢、体重などにより適宜増減する。注入及び排液速度は、通常300mL/分以下とする。
- ダイアニール-N PD-2 1.5腹膜透析液は患者の体液の過剰が1kg/日以下の場合、これのみを1日に3〜4回交換使用すること。ダイアニール-N PD-2 2.5腹膜透析液は患者の体液の過剰が1kg/日以上の場合に通常1日に1〜4回処方し、ダイアニール-N PD-2 1.5腹膜透析液と組み合せて交換使用すること。ダイアニールPD-2 4.25腹膜透析液は高浸透圧液であり、これのみを使用する場合には脱水を起こすことがあるので、急速な除水や多量の除水を必要とする時で、患者の体液の過剰が1kg/日以上の場合に、通常、1日に1〜2回処方し、ダイアニール-N PD-2 1.5腹膜透析液と組み合せて交換使用すること。体液過剰の状況は、患者の体重と基準体重とを比較検討し決定する。基準体重は浮腫がなく、細胞外液の過剰に基づくと考えられる心不全等の症状がない状態で測定した体重値である1)。
- ダイアニール-N PD-2 1.5腹膜透析液、2.5腹膜透析液の2.5Lは2L貯留を施行しているCAPD患者で透析不足による全身倦怠感、食欲不振、不眠等の尿毒症症状が認められる場合、又は1日5回以上の透析液交換に不都合を感じている場合に、患者の腹腔内容積や肺活量に応じて(体重60kg以上を目安とする)2Lに代え適用する。
慎重投与
- 腹膜炎、腹膜損傷、腹膜癒着及び腹腔内臓器疾患の疑いのある患者[腹膜炎、腹膜損傷、腹膜癒着及び腹腔内臓器疾患が悪化又は誘発されるおそれがある]
- 腹部手術直後の患者[手術部位の治癒を妨げるおそれがある]
- 糖代謝障害の疑いのある患者[糖代謝異常が悪化又は誘発されるおそれがある]
- ジギタリス治療中の患者[ジギタリス中毒が誘発されるおそれがある]
- 食事摂取が不良の患者[栄養状態が悪化するおそれがある]
- 腹部ヘルニアのある患者[腹部ヘルニアが悪化するおそれがある]
- 腰椎障害のある患者[腰椎障害が悪化するおそれがある]
- 憩室炎のある患者[憩室炎が腹膜炎合併の原因となるおそれがある]
- 人工肛門使用患者[細菌感染を起こすおそれがある]
- 利尿剤を投与している患者[水及び電解質異常が誘発されるおそれがある]
- 高度の換気障害のある患者[胸腔圧迫により換気障害が悪化するおそれがある]
- 高度の脂質代謝異常のある患者[高コレステロール血症、高トリグリセライド血症が悪化するおそれがある]
- 高度の肥満がみられる患者[肥満を増長させるおそれがある]
- 高度の低蛋白血症のある患者[低蛋白血症が悪化するおそれがある]
- ステロイド服用患者及び免疫不全患者[易感染性であるため]
重大な副作用
心・血管障害
- 急激な脱水による循環血液量の減少、低血圧、ショック等があらわれることがあるので、このような場合には本剤の投与を中止し、輸血、生理食塩液、昇圧剤の投与等適切な処置を行うこと。
被嚢性腹膜硬化症(EPS)
- 被嚢性腹膜硬化症(EPS)があらわれるおそれがあるので、観察を十分に行い、異常が認められた場合には適切な処置を行うこと[「重要な基本的注意4.」の項参照]
薬効薬理
- ダイアニールPD-2は腎によって通常排泄される毒物や代謝物の除去、また体液及び電解質液平衡の是正を目的として腹腔内へ腹膜カテーテルを通じて注入し、一定時間経過後排液するものである。浸透と拡散は透析液と患者の血漿間の腹膜を介して行われる。これにより、血漿電解質濃度は拡散により正常域に近づき、また血中に高濃度で存在する毒物や代謝物は腹膜を介して透析液に移動する。ダイアニールPD-2はダイアニールよりマグネシウムを低く、重炭酸の前物質である乳酸を高く調整してあるので、高マグネシウム血症及び代謝性アシドーシスが更に是正される。透析液中のブドウ糖により血漿と比較して高浸透圧にすることで浸透圧勾配をつくり、患者から腹腔内に水を除去する。6、7、8、9)
★リンクテーブル★
[★]
- 英
- hypoglycemics
- 同
- hypoglycemic agent、antidiabetic agent、antidiabetic drug、antidiabetics、glucose-lowering agent、hypoglycemic、hypoglycemic drug、hypoglycemics
- 関
- [[]]
投稿記事
k氏より
インスリンの抽出は大変意図的に行われたのに対し、スルフォニルウレア薬(SU)は偶然に見つかりました。で、1950年代にはじめに二型糖尿病の患者に使われるようになりました。いまでは20種類くらいのSUが広く世界で使われています。
1997にはメグリチニドが臨床適用されました。食後高血糖の治療薬としてはじめて使用された薬です。
メタフォルミンというビグアナイド薬(BG)は、ヨーロッパで広く使われていましたが、1995年にアメリカでも認可されました。
チアゾリジン1997年に市場導入され、二番目にメジャーなインスリン刺激薬として使用されています。この種類の薬には、広汎な肝障害を起こしにくく、世界中で使われています。
スルフォニルウレア薬 SU薬
膵臓のβ細胞の刺激によって、インスリンを放出させ、血糖値を下げます。
治療が長引くと、インスリン分泌というSUのβ細胞刺激性の効果が薄れてきますが、β細胞上のSU受容体のダウンレギュレーションによるものです。また、SUはソマトスタチンの放出を刺激します。ソマトスタチンはグルカゴン分泌を抑制しているので、これも関係SUの糖を下げる効果と関係しています。
SUはATP感受性Kチャンネルを抑制します。Kレベルが下がると、まく表面における、脱分極を促し、電位依存性カルシウムチャンネルを通じたカルシウムイオンの流入を促進します。
SUには無視できない膵臓外作用があるという議論があります。確かにありうべきことですが、2型糖尿病の患者の治療においては、それほど重要なことではないようです。
SU薬はそれぞれが似たような作用スペクトラムを持っているので、薬物動態的な特性がここの薬を区別する手がかりです。腸管からのSU薬の吸収の割合は薬によって違いますが、食物や、高血糖は、この吸収を抑制します。高血糖はそれ自身、腸管の運動を抑制するので、ほかの薬の吸収も阻害します。血漿濃度が効果的な値にまで達する時間を考えると、半減期の短いSUは、食前三十分に投与するのが適切です。SU薬は90から99パーセントくらい血中たんぱく質と結合し、特にアルブミンと結合します。
第一世代のSUは半減期や分布において、大きく違っています。この半減期や作用時間の不一致の理由はいまだはっきりしていません。
SUはすべて肝臓で代謝を受け、尿中に排泄されます。なので、肝不全、腎不全患者には要注意で処方します。
めったにありませんが、第一世代服用患者では、4パーセントの割合でおきます。第二世代ではもっと少ないでしょう。低血糖による昏睡がしばしば問題になります。腎不全や肝不全がある高齢者の患者でおきやすいです。
重症の低血糖は脳血管障害も起こしうる。急性の神経障害が見つかった高齢患者では血中グルコースレベルを測るのが大事です。半減期の長いSUもあるので、24から48時間のグルコースを輸液します。
第一世代は多くの薬物と相互作用を持っています。
ほかに、吐き気嘔吐、胆汁うっ滞性黄疸、脱顆粒球症、再生不良性・溶血性貧血、全身性のアレルギー症状があります。
SUが心血管障害による死亡率を上げるのかについては議論の余地あり。
SUは、食事療法だけでは十分なコントロールを得られない2型糖尿病患者の血糖コントロールに用いられます。禁忌はtype 1 DM(diabetes mellitus:糖尿病)、妊婦、授乳中の患者、腎障害や肝障害の患者です。
普通の患者なら五割から八割くらい、経口の糖尿病治療薬が効きます。インスリン療法が必要になる患者もいます。
トルブタマイドの一日量は500ミリグラムで、3000ミリグラムが最大の許容量です。SUの治療成績の評価は患者の様子を頻繁に観察しながら、行います。
SUとインスリンの併用療法はtype 1, type 2 両方の糖尿病で用いられていますが、βセルの残存能力がないとうまくいきません。
レパグリニドはメグリチニドクラスの経口インスリン分泌促進物質です。化学構造上、SUとは異なっており、安息香酸から分離されたものです。
SU薬と同様にレパグリニドは膵臓βセルにおけるATP依存性Kチャンネルを閉じることによりインスリン分泌を促進します。AEもSU薬と同様、低血糖です。
Dふぇにるアラニンから分離された薬。レパグリニドよりもSEとして低血糖が認められづらいです。
メトフォルミンとフェノフォルミンは1957年に市場導入され、ブフォルミンが1958年に導入されました。ブフォルミンは使用が制限されていますが、前者二つは広く使われています。フェノフォルミンは1970年代に乳酸アシドーシスのAEによって市場から姿を消しました。メトフォルミンはそのようなAEは少なく、ヨーロッパカナダで広く使われています。アメリカでは1995年に使用可能に。メトフォルミンは単独かSUと併用して使われます。
ものの言い方によると、メトフォルミンは抗高血糖であって、血糖を下げる薬ではありません。膵臓からのインスリン放出は促さないので、どんな大容量でも低血糖は起こしません。グルカゴン・コルチゾール・成長ホルモン・ソマトスタチンにも影響なし。肝での糖新生を抑制したり、筋や脂肪におけるインスリンの働きを増すことで、血糖を押さえます。
小腸から吸収。安定な構造で、血中の蛋白と結合しないで、そのまま尿中に排泄。半減期は二時間。2.5グラムを食事と一緒に飲むのがアメリカで最もお勧めの最大用量。
メトフォルミンは腎不全の患者には投与しないこと。肝障害や、乳酸アシドーシスの既往、薬物治療中の心不全、低酸素性の慢性肺疾患なども合併症として挙げられる。乳酸アシドーシスはしかしながら、めちゃくちゃまれである。1000人年(たとえば100人いたら、10年のうちにという意味の単位。または1000人いたら1年につき、ということ。)につき0.1という割合。
メトフォルミンの急性のAEは患者の20パーセントに見られ、下痢、腹部不快感、吐き気、金属の味、食欲不振などです。メタフォルミンを飲んでいる間はビタミンB12や葉酸のきゅうしゅうが 落ちています。カルシウムをサプリで取ると、ビタミンB12の吸収が改善されます。
血中乳酸濃度が3ミリMに達するとか、腎不全・肝不全の兆候が見られたら、メタフォルミンは中止しましょう。
PPARγに効く。(ペルオキシソーム・プロライファレーター・アクチベイティッド・受容体、つまりペルオキシソーム増殖活性受容体みたいな。)PPARγに結合して、インスリン反応性をまして、炭水化物とか、脂質の代謝を調整します。
ロジグリタゾンとピオグリタゾンは一日一度。チアゾリジンは肝にて代謝され、腎不全のある患者にも投与できますが、活動性の肝疾患があるときや肝臓のトランスアミナーゼが上昇しているときは、使用しないこと。
ロジグリタゾンはCYP2C8で代謝されますがピオグリタゾンはCYP3A4とCYP2C8で代謝されます。ほかの薬との相互作用や、チアゾリジン同士の相互作用はいまだ報告されていませんが、研究中です。
ピオグリタゾンとロジグリタゾンは肝毒性とはめったに関係しませんが、肝機能をモニターする必要があります。心不全のある患者はまずそちらを治療してから。
αGIは小腸の刷子縁におけるαグルコシダーゼの働きを阻害することによって、でんぷん・デキストリン・ダイサッカリダーゼの吸収を抑制します。
インスリンを増やす作用はないので、低血糖もおきません。吸収がよくない薬なので、食事の開始と一緒に飲むとよいです。
アカルボースとミグリトールは食後高血糖の抑制に使われます。
αGIは用量依存性に、消化不良・ガス膨満・下痢などをきたします。αGIとインスリンを併用中に低血糖症状が出たら、、グルコースを補充します。
経口から、グルコースが静脈を通ると、インスリンが上がることがわかっていました。消化管の上部からはGIP、消化管下部からはGLP1というホルモンが出ていて、糖依存性のインスリン放出を促していることがわかりました。これらのホルモンはインクレチンといわれています。この二つのホルモンは別の働き方でインスリンの放出を促進します。GIPはtype 2 DMではインスリン分泌を促進する能力がほとんど失われています。一方でGLP1は糖依存性のインスリン分泌を強く促しています。つまりtype 2 DMの治療ではGIPをターゲットにすればよいということになります。GLPはグルカゴンを抑制し。空腹感を押さえ、食欲を抑えます。体重減少も実現できます。この長所を相殺するように、GLP1は迅速にDPPIV(ヂペプチジルペプチダーゼ4エンザイム)によって負活化されます。つまり、GLP1を治療に使うなら、連続的に体に入れなければなりません。GLP1受容体のアゴニストが研究され、これはDPPIVにたいして抵抗性があります。
そのほかのGLP1療法のアプローチに仕方としては、DPPIVプロテアーゼの不活性化で、それによってGLP1の循環量を増やそうとするものです。type 2 DM治療に新しい薬がでるかもしれないですね。
[★]
- 英
- EF hand
- 関
- カルモジュリン、トロポニンC、カルシウムイオン
[★]
- 英
- Ca2+ concentration
- 関
- カルシウム濃度、Ca2+濃度
[★]
カルシウムチャネル
[★]
- 英
- calcium
- 関
- カルシウムイオン、リン
- calcium channel blockers, calcium channels
基準値
- 血清総Ca 8.6-10.1 mg/dl(臨床検査法提要第32版)
- 8.6-10.2 mg/dL (QB) だいたい 9.4 ± 0.8
- 血清Caイオン 1.15-1.30 mmmol/l(臨床検査法提要第32版), 4.6-5.1 mg/dl
血液ガス
- 血液ガスでは (mEq/l)で出されるが 4倍すれば (mg/dl)に変換できる 原子量が約40ゆえ
溶解度積
リン酸カルシウム
|
366x10-6
|
(30℃)
|
リン酸カルシウム
|
0.35x10-6
|
(38℃)
|
炭酸カルシウム
|
0.0087x10-6
|
(25℃)
|
酒石酸カルシウム
|
0.0077x10-6
|
(25℃)
|
シュウ酸カルシウム
|
0.00257x10-6
|
(25℃)
|
オレイン酸カルシウム
|
0.000291x10-6
|
(25℃)
|
パルチミン酸カルシウム
|
0.000000161x10-6
|
(23℃)
|
カルシウムの吸収(SP.744)
- +健康成人の1日あたりの食物Ca摂取0.6g
- +消化管分泌物と脱落上皮細胞のCa 0.6g
- -吸収されるCa 0.7g
- -そのまま排泄 0.5g
- 正味吸収されるCa 0.1g
カルシウムの吸収部位
カルシウム代謝の調節機構
副甲状腺ホルモン
- 1. 破骨細胞に作用してCa,Pが血中へ。
- 2. 腎の遠位尿細管に作用してCa再吸収の亢進、近位尿細管でのP再吸収の抑制。
- 3. 近位尿細管に作用して酵素を活性化し、1,25水酸化ビタミンD3の産生亢進。
1,25(OH)2D3
- 1. 空腸からのCaとPの吸収。
- 2. 骨形成促進。
- 3. 遠位尿細管でのCaとPの再吸収促進。
- 4. 副甲状腺ホルモンの合成を抑制
尿細管における部位別カルシウム輸送
- 糸球体で濾過されるのはイオン化Caと陰イオン複合型Ca(蛋白結合型Caは濾過されない)
- 濾過されたカルシウムのうち95%が再吸収される。
- 近位尿細管:60-70%
- ヘンレループ:20-25%
- 遠位尿細管、集合管:10-15%
近位尿細管
- Na+依存的に再吸収。受動輸送80%、能動輸送20%
- 基底側のCa2+ ATPase, 3Na+-Ca2+逆輸送系
ヘンレループ
- 太いヘンレループ上行脚で
- 受動輸送:管腔内電位が正であるため
遠位尿細管~集合管
- 糸球体濾過量の10-15%が再吸収されている → 量としては少ないが能動的に吸収が行われる部位。
- 能動輸送:管腔内電位が負であるため。
- PTH、カルシトニンに調節されている
- チアジド系利尿薬により細胞内Na↓となるとCa再吸収↑となる!!!! ← ループ利尿薬と違う点。よって高カルシウム血症が起こることがある。
接合尿細管
- 管腔側:Ca2+チャネル/非選択的カチオンチャネル
- 基底側:Na+-K+ ATPase, 3Na+-Ca2+交換系
尿細管におけるカルシウムの輸送の調節 SP.796
- Ca2+の尿中排泄量はNa+の尿中排泄量と比例。循環血漿量が増加するとCa2+排泄も増加
- Ca2+の尿中排泄量は血漿Ca2+濃度と比例する。
血清カルシウム濃度
- 血液中でCa2+は調節を受けて一定に保たれるが、蛋白と結合しているCaはアルブミンの量によって増減する。
- 血清アルブミン濃度 4 g/dl、血清Ca濃度 9mg/dl。補正Ca濃度 9mg/dl → 正常
- 血清アルブミン濃度 2 g/dl、血清Ca濃度 7mg/dl。 → 大変!!低カルシウム血症!! → ホント? ってことになる。アルブミンの量が減ってAlb-Caが減っただけで生理的に重要なCa2+は保たれているのではないか。 → こんな時に補正Ca濃度を用いるのである
- →補正Ca濃度 9mg/dl → 正常
- つまり、低アルブミン血症ではCa2+は保たれているにもかかわらず、血清Caは低値となりそのままでは評価できないために補正を行う。
- 補正Ca濃度(mg/dl)=Ca実測値(mg/dl)+(4-血清アルブミン濃度(g/dl)) ・・・Payneの式
- アルブミンのpIは7より小さく、アシデミアでは負に帯電しているアルブミンが減少、アルカレミアでは負に帯電しているアルブミンが増加する。すなわち、pHが下がるとアルブミンとくっつなくなったCaが増加するので、血液pH0.1の低下につきfreeイオン化Ca(Ca2+)は0.12mg/dl増加する???????????
循環血液量
血清Ca濃度
- 血清Ca濃度↑→PTH↓
- 生理活性のあるのはイオン化Ca(Ca2+)のみ
- 血清Ca濃度=イオン化Ca(45%) + 蛋白結合型Ca(40%) + 陰イオン複合型Ca(15%)
- イオン化Caは一定に保たれる
pH
- アシドーシス :pHが小さくなると負電荷減少:蛋白のCa結合能↓、イオン化Ca↑
- アルカローシス:pHが大きくなると負電荷増加:蛋白Caの結合能↑、イオン化Ca↓→Ca欠乏(低カルシウム血症)
低蛋白血症
- 低蛋白血症の際、蛋白結合型Caは減少するが、イオン化Ca一定。
尿中カルシウム
血中カルシウムと尿中カルシウム
- 薬剤などの影響がなければ、血中カルシウムと尿中カルシウムは相関がありそうである → 副甲状腺ホルモン
血清カルシウムと心電図
元素
- 金属元素。周期表第2族アルカリ土類金属元素
- 原子番号:20
- 元素記号:Ca
- 原子量 40.078 g/mol
臨床関連
参考
- http://www.orth.or.jp/osteoporose/caseizai.html
[★]
- 英
- Io
- 関
- カリスト、ユーロパ、ガニメデ、木星
[★]
- 英
- ion
- 関
- イオン性