出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2014/11/25 20:37:07」(JST)
卵巣 | |
---|---|
正面から見た女性器
|
|
英語 | Ovary |
器官 | 女性器 |
動脈
|
卵巣動脈
子宮動脈 |
静脈
|
卵巣静脈
|
卵巣(らんそう)とは、動物のメスの生殖器のひとつで、卵子(または卵(らん)ともいう)を作り出す器官。一般的な機能として、卵子のもとになる卵細胞を維持・成熟させ、その後放出する。オスで精子を作り出す精巣と合わせて、生殖巣と呼ばれる。また、脊椎動物の卵巣は、エストロゲン(卵胞ホルモン)、プロゲステロン(黄体ホルモン)を分泌する器官でもあるので、内分泌器官でもある。
ヒトを含む哺乳類の卵巣の内部には、卵胞(らんほう、らんぽう)と呼ばれる構造が多数あり、それぞれ1つずつの卵細胞を包んでいる。卵胞が卵細胞を成熟させ、排卵(はいらん)と呼ばれる、卵巣からの放出を起こさせる。排卵は、動物の種類によって、年に1〜2回程度の繁殖期に起こったり、一定の周期(性周期)でくりかえし起こる種などがある。排卵された卵細胞は、一旦は体腔内に出るが、卵管内に吸い込まれ、卵管から子宮へと流れていく。卵細胞を放出した後の卵胞は、その後、黄体(おうたい)へと変化する。卵巣からは、何種類かのホルモンが分泌される。卵胞からはエストロゲンが、黄体からはプロゲステロンおよびエストロゲンが分泌される。これらのホルモンは、メスの体に機能的な変化を起こさせ、排卵とその後の受精、着床、妊娠といった一連の現象を引き起こすために重要である。このホルモンによる作用は生殖器を中心とした変化だが、それ以外にも全身にわたる。
ヒトの場合、女性の性周期は平均28日程度であるが、子宮内膜の剥離に伴う出血(月経)を目安に考えるため、月経周期と呼ばれる。卵巣からの排卵もこの周期にあわせて起こる。月経の時期になると、卵巣内では次回の排卵のために新たな卵胞が発達をはじめ、月経から約2週間程度で卵胞は最大に発達し、卵巣からの排卵が起こる。
ヒトには、卵巣は2個あり、長さ数 cmの長楕円形または若干扁平な形をしている。重さは1個が数 g。子宮上端の左右に位置する。子宮との間は、固有卵巣索(卵巣固有靭帯)と呼ばれる、ヒモ状の結合組織でつなぎ止められているが、管で直接つながっているわけではない。また骨盤の内側の壁からは、卵巣提索(骨盤漏斗靭帯)と呼ばれるヒモ状組織で外側からも支えられている。卵巣のすぐ近くには、卵管の開口部があり、これを卵管采と言う。卵管は、子宮の内部とつながっている管であり、卵管の端は管がラッパ状にひろがり管の外側に向かって開いて終わっている。
卵巣の表面は1層の細胞からなる漿膜(別名、胚上皮)と結合組織性の白膜に覆われる。内部は、大部分を占める皮質と中心部の髄質に分かれる。皮質には、無数の原始卵胞が詰まっている。原始卵胞は、休眠状態の卵細胞をその中に含んでいる。成人女性では、常に原始卵胞のうちのごく一部が発達をして排卵を繰り返している。中心部の髄質は血管、神経が多い結合組織である。
主記事:卵胞
卵胞または濾胞(ろほう) とは、卵巣の中に多数存在する球状の細胞のかたまりで、その中には1個の卵細胞が含まれ、それを卵巣の細胞が包んでいる構造である。卵胞は、排卵が起こるときの機能的な単位である。卵胞はその発達段階により、異なった名前で呼ばれている。
原始卵胞が発達を開始するのは月経期の直前で、その後、この卵胞は1次卵胞、2次卵胞になり発達を続け、次の排卵期に成熟卵胞になる。この卵胞の発達は、下垂体の卵胞刺激ホルモン (FSH) によって促される。この間20日程度の非常に早い変化である。このとき、はじめに休眠から醒める卵胞は多数であるが、最終的に排卵に至るサイズにまで発達するのは1個の卵胞のみである。残りの卵胞は、発達の過程のどこかで発達を止め、アポトーシスにより細胞が死滅し、吸収されてしまう。この現象を卵胞閉鎖と呼び、発達を止めて吸収されていく過程の卵胞を閉鎖卵胞と呼ぶ。卵胞閉鎖はFSH刺激の不足が原因であると考えられ、発達の遅い卵胞は閉鎖するが、発達の進んだ卵胞ではFSHレセプターの発現量が高く、低濃度のFSH刺激でも生存、発達する。閉鎖はヒトの卵巣で特に顕著に観察される。
卵胞からは、エストロゲン(卵胞ホルモン)が分泌されるが、これは内卵胞膜の細胞が産生、分泌したアンドロゲンを、顆粒層の細胞が吸収し、この細胞が持っているアロマターゼと呼ばれる転換酵素でエストロゲンに変換して分泌していると考えられている。エストロゲンの分泌量は卵胞の発達とともに増加していくため、月経期の後、排卵期が近づくにつれて、血液中のエストロゲン濃度は上昇し、排卵時にピークに達する。
主記事:排卵
卵胞が大きく発達してくると、卵胞から分泌されるエストロゲンの量も次第に増加し、血液中のエストロゲン濃度が高まっていく。これにより、ひとつには視床下部から分泌されるゴナドトロピン放出ホルモン (GnRH) の分泌パターンが変化し、分泌量が増加する。ゴナドトロピン放出ホルモンは、下垂体からの卵胞刺激ホルモン (FSH) や黄体形成ホルモン (LH) の分泌を促すホルモンなので、下垂体からのFSHやLHの分泌が増える。もうひとつには、血液中のエストロゲン濃度が上昇すると、これが下垂体に直接作用し、FSHやLHの分泌が高まる効果もある。結果的に、これらのホルモンが相乗的に作用し、排卵直前の時期には、卵胞からのエストロゲン分泌、視床下部からのGnRH分泌、下垂体からのFSH、LH分泌が相次いで急激なピークを迎える。ここで、排卵が誘発される。
排卵のときには、1個の卵胞は、卵巣の体積のかなりの部分を占めるぐらい大きく育っている。この卵胞の壁が破れ、同時に卵胞を包む卵巣の壁も破れる。卵胞の中からは、卵胞液が流れ出してくるが、卵細胞とそれを数層にわたって囲んでいる顆粒層の細胞も、塊のまま流れ出してきて、卵巣の外に出される。これらの一連の過程は、成熟した卵胞で卵胞液の分泌が非常に高まり卵胞の内圧が高まっているところに、ホルモンの働きで外卵胞膜の平滑筋線維が収縮し、卵胞の中身を押し出そうと働くことによって起こると考えられている。
排卵によって、卵胞の壁には大きな穴が開き、中にあった卵細胞は流れ出ていく。内圧を失った卵胞はしぼんでしまい、壁の穴からは血液などが流入する。しかし、卵胞の残骸の中に残った細胞は死滅せず、ここで再び細胞分裂が盛んになる。特に、顆粒層の細胞と内卵胞膜の細胞の増殖が盛んで、次第に元の卵胞の内部を埋め尽くすぐらい増えていく。これが黄体である。黄体の細胞は元々は卵胞の顆粒層だった顆粒層黄体細胞と内卵胞膜だった卵胞膜黄体細胞とから構成されている。巨大な細胞のかたまりとなった黄体の内部には血管が発達し、細胞から分泌されるプロゲステロン、エストロゲンが血液中に運ばれる。プロゲステロンは、排卵された卵がもし受精した場合、子宮に着床しやすくなるように、子宮の壁(子宮内膜)を変化させる働きがある。
もし子宮で着床が起こると、そこで卵を囲むように形成される胎盤から、絨毛性ゴナドトロピンやプロラクチンなどのホルモンが分泌され、その作用により卵巣では黄体から引き続きプロゲステロンが分泌され続ける。この黄体は、妊娠中期になるまで活発にプロゲステロンを分泌し、妊娠を維持させる。一方、子宮で着床が起こらないと、黄体は2週間ほどでプロゲステロン分泌をやめ、黄体細胞は萎縮を始める。このことにより血液中のプロゲステロン濃度が急激に減少し、これが引き金になって、子宮では子宮内膜の剥離、月経が起こる。また、卵巣では次の排卵のための卵胞の発達が開始される。
生殖細胞である卵細胞はもともとは2n=46本の染色体に相当するDNAを持っている細胞だが、精子と受精する前に減数分裂を行う。このことにより、あらかじめ核内のDNA量を半分に減らし、n=23本の染色体の分のDNAだけを持つようになり、受精に備える。減数分裂は2回の細胞分裂が引き続き起こる現象で、その各段階で、卵細胞は下記のような異なった名称で呼ばれる。
ヒトの卵細胞の減数分裂は、女性の半生を通して起こる長い現象である。胎児の卵巣内にある卵細胞は、卵祖細胞あるいは卵原細胞である。出生前後までには、すべての卵祖細胞は1回分裂し、1次卵母細胞になる。生まれた後、思春期になるまでは、原始卵胞の中の卵細胞は、このまま1次卵母細胞である。卵胞が発達をはじめ、排卵直前の成熟卵胞になると、更に1回の分裂を行い、2次卵母細胞になる。排卵されたときにも卵細胞は2次卵母細胞の状態であり、その後、精子との受精が刺激になって最後の分裂が起こり、卵子となり、精子の核と核融合を行う。つまり、出生前から始まった減数分裂は排卵された後までかかって完了する。
女性の場合、高齢での出産は染色体や遺伝子の先天的な異常の確率が上昇することが知られているが、これは減数分裂に非常に長い時間がかかることと密接に関係している。減数分裂など、細胞分裂の途中の細胞は、放射線や化学物質など、DNAにダメージを与える因子の影響を受けやすい。これは、出生後ずっと減数分裂の途中で止まっている卵母細胞がDNA損傷を受けやすいことを意味している。このため、単純に考えて、20歳の女性の卵細胞と比べて、40歳の女性の卵細胞は、環境中の因子の影響を2倍多く受けており、それだけDNAが損傷を起こしている確率が高いことになる。
卵細胞の減数分裂が、通常の細胞分裂や精子形成過程の減数分裂と異なる点は、分裂後の2個の細胞が同じ大きさでないことである。核が2個に分裂しても、それを囲む細胞質は2つに分かれず、どちらか一方の核が、卵細胞の細胞質からはじき出されるように排除される。はじき出された核を極体(きょくたい)と呼ぶ。減数分裂の第1分裂、第2分裂それぞれで極体が放出されるので、それぞれを第1極体、第2極体と呼ぶ。このシステムは、最終的に1個だけが必要な卵細胞の形成過程で、細胞質の量を減らさないのに役立っていると考えられている。卵細胞の細胞質は、受精卵のその後しばらくの間の栄養分、遺伝子発現情報などを含んでいる。
多くの動物の卵は食用に用いられるが、卵を含む卵巣そのものを食用にするものも多い。卵は成熟すると卵巣外に放出(排卵)されることから、卵巣を食べるときは、未成熟の卵ごと食べるということもできる。特に魚類ではメスの体の卵巣は腹子(はらこ)などと呼ばれ一般的である。下記は卵巣を食用に用いる動物と卵巣の名称である。
ウィキメディア・コモンズには、卵巣に関連するカテゴリがあります。 |
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
国試過去問 | 「104D030」「095H025」「114D018」「104I077」「106I077」「109A024」「112F049」「106I064」「105G044」「105D046」「104E052」「105F022」「105I050」「099G030」「102D029」「108G032」「109I019」「104C008」「096G047」「096G042」 |
リンク元 | 「ホルモン」「ビスフェノールA」「解剖学」「プロゲステロン」「子宮内膜症」 |
拡張検索 | 「チャイニーズハムスター卵巣細胞形態変化試験」「卵巣がん細胞」「卵巣疾患」 |
関連記事 | 「巣」 |
CE
※国試ナビ4※ [104D029]←[国試_104]→[104D031]
C
※国試ナビ4※ [095H024]←[国試_095]→[095H026]
B
※国試ナビ4※ [114D017]←[国試_114]→[114D019]
AB
※国試ナビ4※ [104I076]←[国試_104]→[104I078]
DE
※国試ナビ4※ [106I076]←[国試_106]→[106I078]
D
※国試ナビ4※ [109A023]←[国試_109]→[109A025]
B
※国試ナビ4※ [112F048]←[国試_112]→[112F050]
C
※国試ナビ4※ [106I063]←[国試_106]→[106I065]
A
※国試ナビ4※ [105G043]←[国試_105]→[105G045]
B
※国試ナビ4※ [105D045]←[国試_105]→[105D047]
ABC
※国試ナビ4※ [104E051]←[国試_104]→[104E053]
D
※国試ナビ4※ [105F021]←[国試_105]→[105F023]
C
※国試ナビ4※ [105I049]←[国試_105]→[105I051]
D
※国試ナビ4※ [099G029]←[国試_099]→[099G031]
CE
※国試ナビ4※ [102D028]←[国試_102]→[102D030]
AB
※国試ナビ4※ [108G031]←[国試_108]→[108G033]
C
※国試ナビ4※ [109I018]←[国試_109]→[109I020]
E
※国試ナビ4※ [104C007]←[国試_104]→[104C009]
B
※国試ナビ4※ [096G046]←[国試_096]→[096G048]
D
※国試ナビ4※ [096G041]←[国試_096]→[096G043]
| 構造式=ビスフェノールAの構造式 | IUPAC= 4,4'-(プロパン-2,2-ジイル)ジフェノール
| 別名= 4,4'-ジヒドロキシ-2,2'-ジフェニルプロパン
4,4'-イソプロピリデンジフェノール | 分子式=C15H16O2 | 分子量=228.29 | CAS登録番号=80-05-7 | 形状=淡いベージュ色の固体 | 密度=1.20 | 融点=157 | 融点注= | 沸点=220 | 沸点注=/4 mmHg | SMILES=C(C)(C1=CC=C(O)C=C1)(C2=CC=C(O)C=C2)C | 出典=ICSC
ビスフェノールA (bisphenol A) は2つのフェノール部位を持つ芳香族化合物である。しばしば BPA と略称される。
ビスフェノールAは2当量のフェノールと1当量のアセトンの反応によって合成される。この反応は酸によって触媒されるが、触媒として塩酸のような鉱酸やスルホン酸型の陽イオン交換樹脂(スチレン−ジビニルベンゼン共重合体を硫酸などでスルホン化したもの)のような固体酸が使われる。さらに反応速度や選択性の向上を目的に、チオール化合物のような含硫黄化合物を触媒に共存させることが一般に行われている。 一般に、フェノールは大過剰にして反応を行う。
合成された大過剰のフェノールを含む反応液を冷却すると、ビスフェノールA:フェノール=1:1の付加物結晶(アダクト)が得られるので、これを分離・洗浄した後、結晶を加熱・溶融し、フェノールを蒸留などで除去すると、高純度のビスフェノールAが得られる。工業的にはこれを1〜2ミリ程度の球状に粒子化(プリル)して製品化している。
多くのケトンは同様な縮合反応を起こす。この合成法では副産物が水しか生成しないため効率的である<ref name=Fiege>テンプレート:citation</ref>。
1891年にロシアの化学者ディアニン (A. P. Dianin) によって初めて合成された<ref>Dianin, A. P. (1891). Zhurnal russkogo fiziko-khimicheskogo obshchestva 23: 492.</ref><ref>Zincke, Th. (1905). "Mittheilungen aus dem chemischen Laboratorium der Universität Marburg". Justus Liebigs Ann. Chem. 343: 75–131.</ref>。1930年代には合成エストロゲン(女性ホルモン)の1つとして研究されていたが、当時ジエチルスチルベストロールがエストロゲンとして強い活性を持つことが明らかにされたため、ビスフェノールAが合成エストロゲンとして使われることはなかった。
現在ではポリカーボネート製のプラスチックを製造する際のモノマーや、エポキシ樹脂の原料として利用されている。抗酸化剤、あるいは重合禁止剤としてポリ塩化ビニルの可塑剤に添加される。
ポリカーボネートの用途はサングラスやCDから水・食品の容器まで多くの日用品にわたり、壊れにくいため哺乳瓶にも使われている。歯科治療用の歯の詰め物や、缶詰の内側を被覆するエポキシ樹脂の中にも含まれている。
ポリカーボネートやエポキシ樹脂のようなビスフェノールAを原料とする種類の合成樹脂では、強力な洗剤で洗浄した場合や酸・高温の液体に接触させた場合にビスフェノールA成分が溶け出すことが知られている。アメリカ合衆国での調査では、ヒトからかなりの確率で検出された。
ビスフェノールAを摂取するとエストロゲン受容体が活性化されて、エストロゲン自体に類似した生理作用を表す。1930年代に卵巣を除去したマウスにこの物質を投与する実験が行われ、作用が初めて証明された<ref>Dodds, E. C.; Lawson, W. (1936). Nature 137: 996.</ref><ref>Dodds, E. C.; Lawson, W. (1938). Proc. R. Soc. Lond., B, Biol. Sci. 125: 222–232.</ref>。
ビスフェノールAが、従来の無作用量より遥かに低濃度でのみ毒性を有する、という「低用量仮説」が提唱された。これは従来の薬理学とは全く矛盾する内容であったため、大きな議論となった。
フォム・サール (F. vom Saal) とヒューズ (Claude Hughes) の論文(2004年)によると、合成樹脂の製造業者らが行った検証(11件)ではエストロゲン様作用が認められなかったのに対し、他機関の研究では104例中の約9割で上記の症状が出るという結果となった。これをフォム・サールらは、製造業者らが都合の良い試験結果のみを採用したためであると主張した<ref>vom Saal, F.S.; Hughes, C. (2005). Environ. Health Perspect. 113(8): 926–933. PMID 16079060</ref>。アメリカ・プラスチック協会によって資金を提供されているハーバード・リスク分析センターによる以前の報告では、危険性を証明するにはまだ根拠が乏しく、定量的に証明できていないとされていた。ヒューズはハーバード・リスク分析センターの委員を務めていたが、彼は上記の論文の中で、その見解は時代遅れのものである、なぜなら2001年から出版されている低用量のビスフェノールAに関する多くの論文のうちわずかしか考慮していないからだ、と述べている。
2006年、フォム・サールとウェルションス (Wade V. Welshons) は、製造業者の資金提供によって行われた少数の研究が低用量のビスフェノールAの効果を見落としていた原因について、詳細な分析を報告した<ref>vom Saal, F. S.; Welshons, W. (2006). Environ. Res. 100: 50–76. DOI: 10.1016/j.envres.2005.09.001</ref>。また、アメリカ政府機関によって開設された委員会による再調査によると、それらの論文の1つは実際にはビスフェノールAについての影響を発見していたにも関わらず、この結果を否定する内容になっていた。一部の研究では陽性対照を使っておらず、他の研究との比較によって陰性対照が汚染されていた可能性も示された。さらに、エストロゲンに反応しにくい種類のラットを使用した研究もいくつか存在した。
アメリカ化学工業毒性研究所は、フォン・サールらによる「低容量仮説」を慎重に検証し、彼らの実験結果が再現しないと発表した。またハーバード大学リスク分析センターや各国の政府機関(FDA、EFSA、ECBなど)でも低用量仮説を含めた研究結果を集めて詳細に検討し、ビスフェノールAはヒトの健康に影響がないことを報告している。
現在ではビスフェノールAは、他の「環境ホルモン」疑惑を受けた化合物と同様、通常の摂取条件ではヒトに対して大きな影響を及ぼすものではないという考えが強まっている。ただし生態系への影響、胎児や乳幼児への影響に関してはまだ研究が進行中である<ref>「メディア・バイアス」 松永和紀著(2007年,光文社新書)</ref>。
厚生労働省は、「成人への影響は現時点では確認できない」としながらも、「公衆衛生上の見地から、ビスフェノールAの摂取をできるだけ減らすことが適当」と報道発表(2008年7月8日)した。また、同日に一般消費者向けの「ビスフェノールAについてのQ&A」が公表されている。<ref>ビスフェノールAがヒトの健康に与える影響について,厚生労働省 (2008年7月8日)</ref>
<references />
名称 |
陰部大腿神経大腿枝 |
外側大腿皮神経 |
大腿神経前皮枝 |
閉鎖神経皮枝 |
伏在神経 |
浅腓骨神経 |
深腓骨神経 |
上殿皮神経 |
中殿皮神経 |
下殿皮神経 |
後大腿皮枝の枝 |
後大腿皮神経の終末枝 |
内側腓腹皮神経 |
外側腓腹皮神経 |
腓腹神経 |
外側足背皮神経 |
臓器 | 栄養血管 | 機能血管 | ||
動脈 | 静脈 | 動脈 | 静脈 | |
食道 | ||||
胃 | ||||
小腸 | 上腸間膜動脈 | 上腸間膜静脈→門脈 | ||
大腸 | 上・下腸間膜動脈 | 上・下腸間膜静脈→門脈 | ||
肝臓 | 固有肝動脈 | 肝静脈→下大静脈 | ||
胆嚢 | 胆嚢動脈 | 胆嚢静脈 | ||
膵臓 | ||||
気管 | ||||
肺 | 気管支動脈 | 気管支静脈 | 肺静脈 | 肺動脈幹→肺動脈 |
腎臓 | ||||
尿管 | ||||
膀胱 | ||||
脾臓 | 脾動脈 | 脾静脈 | ||
精巣 | 精巣動脈 | 蔓状静脈叢 | ||
卵巣 | 卵巣動脈 | 蔓状静脈叢→卵巣静脈 |
エストロゲン | プロゲステロン | |
子宮内膜 | 増殖期:増殖 分泌期:プロゲステロンと協調して分泌期維持 |
分泌期:分泌期誘導 |
卵巣 | 卵胞の成長 顆粒細胞に作用してエストロゲン受容体発現↑ →エストロゲンの正のフィードバック →エストロゲンの大量分泌 |
|
子宮筋 | オキシトシンに対する感受性↓ 肥大増殖 |
オキシトシンに対する感受性↑ |
中枢神経への作用 | 視床下部、下垂体 少量→負のフィードバック 多量→正のフィードバック |
視床下部体温中枢 刺激 |
その他 | ・子宮頚管粘液 量:↑、牽引性:↑、羊歯葉状結晶:↑ ・膣スメアの変化 成熟した表層細胞の出現 角化、核濃縮、好酸性 |
・乳腺 腺房発育 |
エストロゲン | プロゲステロン | ||||
エストロン | エストラジオール | エストリオール | |||
(pg/ml) | (pg/ml) | (pg/ml) | (ng/ml) | ||
女性 | 卵胞期 | 10~60 | 10~150 | 0~20 | 0.5~1.5 |
排卵期 | 25~100 | 50~380 | 5~40 | 1.5~6.8 | |
黄体期 | 25~80 | 30~300 | 5~40 | 5.0~28.0 | |
更年期 | 20~80 | 10~50 | 0~20 | 0.3~0.4 | |
男性 | 30~60 | 10~60 | 0~15 | 0.2~0.4 |
.