出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/04/04 20:22:34」(JST)
「CAD」のその他の用法については「CAD (曖昧さ回避)」をご覧ください。 |
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(2015年12月) |
CAD(キャド、英: computer-aided design)は、コンピュータ支援設計(直訳)とも呼ばれ、コンピュータを用いて設計をすること。あるいはコンピュータによる設計支援ツールのこと(CADシステム)。人の手によって行われていた設計作業をコンピュータによって支援し、効率を高めるという目的からきた言葉である。
CADを「コンピュータを用いた製図(システム)」と解する場合は「英: computer-assisted drafting」、「英: computer-assisted drawing」を指し、同義として扱われることもある。
設計対象や目的によりCADD(コンピュータ支援設計と製図、英: computer-aided design and drafting)、CAID(コンピュータ支援工業デザイン、英: computer-aided industrial design)、CAAD(コンピュータ支援建築設計、英: computer-aided architectural design)などと区分される場合もある。
日本での定義としてはJIS B3401に記載があり、「製品の形状、その他の属性データからなるモデルを、コンピュータの内部に作成し解析・処理することによって進める設計」となっている。
3次元の作業の場合でも、数値の精密さの必要がないコンピュータゲームや映画やアニメーションなどの制作関係の事柄については「3DCG」を参照。
2次元製図システムは1960年代、アイバン・サザランド博士が開発した「Sketchpad」を原型として、アメリカ国防総省の肝いりで実用化された、航空機の設計を主たる目的とした「CADAM(キャダム)」が長くデファクトスタンダードであった。航空機の設計には膨大な量の図面が必要であり、当時軍用機の主力メーカーであったロッキードがCADAMの開発に協力したと言われる。
CADAMなど初期の製図システムは汎用機に接続され、1280×1024画素程度の表示能力を備えたエンジニアリングワークステーションを必要としたが、やがて640×480画素程度の表示能力のMS-DOSパソコンに対応した廉価な機械系、建築系CADソフトが続々と登場し、一定のマーケットを獲得することに成功した。それらのソフトはその後Windows版となり、さらに3次元処理機能などを加え現在に至っている。なおMacintoshで動作するCADソフトは、VectorWorksなど種類が少ない。これはCADソフトの開発ベンダーに、IBMなど汎用機系列が多かったことによる。
CAD自体はコンピュータを使用して設計や製図をするシステムであり、製図作業や図面作成が時間はかかるが正確に処理できること、編集が容易であること、データ化、ソフト間の互換性があること、10年程度の学習期間で技術修得が可能になる等の利点があるとされるが、大きく分けて汎用型と専用型があり、汎用型は図面を模様として細かく描くことを最大の目的とし、あらゆる図面を描くことができる。しかし、積算までは単独ではできない。専用型はある特定の分野における省力化・迅速化を目的としている。
その後、コンピュータ上のデータを下流の生産工程で有効活用するためにCAM、CATなど、逆に上流で強度や振動などを解析するためにCAEなどの技術が開発提供され、これらを EDPS/MISといった情報処理システムと統合して CIMS(英: computer-integrated manufacturing system)という概念に発展した。
CADによって、設計作業においては、以下のように効率化や正確さの向上がなされた。
一方、電気系ではプリント基板のパターンを効率良く設計するためのシステムが、半導体産業では集積回路のフォトマスクを設計するためのシステムが開発された。また、電気回路の動作シミュレーションのためのシステムなどを加えて電気系CADの分野が生まれ、後に EDAという言葉が使われるようになった。
市販のCADは一般的に毎年のようにバージョンアップが存在し、その度に高額なライセンス料が発生するため、中小企業にとっては痛手でもある。仮にバージョンアップをしなかった場合、数年後のバージョンでは現在の保存形式がサポートされないなど、かなり強引な販売手法を使う企業も少なからず存在する。また、官公庁や元請けにお墨付き(指定)のCADも存在し、下請けはなかなか他のCADに変更できないなどの問題もある。
各分野用に各種のCADが用意されている。
内部的にデータが2次元(x,y)で表現されているものを2次元CAD(2DCAD)と呼び、表示上では、立体を正面図・側面図・平面図等の平面図形として表示・操作する。内部的にデータを3次元(x,y,z)で表現するものを3次元CAD(3DCAD)と呼び、ディスプレイモニターなどの表示デバイスで陰影などを付け、3次元的に表示・操作する。内部的には2次元プラス高さ情報で表現されて、表示上3次元CADに似た表示をするものを2.5D(または2+1/2次元)と呼ぶ場合がある。
一般的な2次元グラフィックソフトウェアのデータを大別すると、主に線分要素で表示するベクトルデータ(ベクタ形式)と、ビットマップ画像で表示するラスタ形式とに分けることができる。作図ソフトとしての2次元CADでは、ごく簡易なものを除いてベクトルデータによる。ベクトルデータは、2次元では始点から終点を示す(x1, y1) (x2, y2)、3次元では(x1, y1, z1) (x2, y2, z2)のような座標値で線分要素を表現する。
2次元CADが機械製図図面の電子化の位置づけであるのに対して、3次元CADでは3次元形状をデータモデルとして正しく表現することが要求される。すなわち対象の頂点や辺、面などの連節を位相構造として表現すること、辺や面に対応する幾何要素の形状が数学的に厳密に定義されていること、その上で立体同士の和、差、積などの集合演算を実施できること、などである。このような3次元CADのデータ構造は境界表現B-reps(英: boundary representation)と呼ばれる。
3次元CADは、業務で用いる対象と取り扱える形状要素のタイプと価格帯により、ハイエンド、ミッドレンジなどに種類分けされる。
ハイエンドCADでは、自動車・航空機他、強い意匠性が求められる民生品の設計に用いられ、特に自動車の車体・部品はDassault Systems社のCATIA 、PTC社のPTC Creo Parametric、Siemens PLM社のNX、I-DEASの5製品でシェアを寡占している。
ミッドレンジCADでは、家電製品・一般OA製品などの分野で、量産前の試作回数を減らす目的での普及がめざましく、SolidWorks社のSolidWorks、オートデスク社のInventorがシェアの大部分を確保している。また、一方で工作機械・生産設備、専用機など意匠性よりも性能・精度・開発期間が重要視される分野でのミッドレンジCADも普及期に入りつつあり、富士通(子会社のデジタルプロセス社)製のICAD/SXが国産のミッドレンジ3次元CADとして有名である。
近年、ラピッドプロトタイピングである3Dプリンタの小型・低価格が進み、ミッドレンジ3Dプリンタの普及とともに、上記のミッドレンジ3DCADソフトウェアやRobert McNeel & Associates社のRhinoceros 3Dなどの普及が製造業を中心に急速に進み、様々な用途で使われている。
ボーイング777は、史上初めて機体の全設計を3次元機械系CADによって行なったことでも知られている。
建築分野では、建物や構造物などの建築物の立体を平面図・立面図・断面図、あるいは透視図等の図面として表現し、それにより建築物を製作=施工していくことになる。技術者の専門領域に応じて、意匠、構造、設備などの図面群が存在し、それらの図面を作成するソフトウェアを建築CADと呼ぶ。図面は設計行為の成果物であるが、建築CADのレベルも製図をするだけのものから、より専門的な検討、解析、シミュレーションなどを含んだ高度なレベルまで存在することになる。
機能を建築向けに特化したものではなく、Jw_cad、VectorWorks、AutoCAD、DRA-CADなどが日本の建築分野でよく利用されている。 Jw_cadが2次元CADであるのに対し、VectorWorks、AutoCAD、DRA-CAD等は、図面を作成する機能や3次元モデルを作成するモデリング機能などが搭載されている。
導入コストの安さから手軽に利用できる反面、レイヤーや線種等の作図ルールを使用者個人、企業、あるいはプロジェクト毎で自由に決めることが出来てしまうため、後述するBIMに見られるような、建設のライフサイクルや社会資本としての図面データの一元化や再活用に対応できず、結果、全体としての効率や生産性は必ずしも向上しているとはいえない。
かんたんな操作で一連の図面を作成することができる。建具、床、壁などが部屋ごとにひとつのブロックになっており、それらを部屋の種類(居間、台所など)と部屋の大きさ(8畳など)を指定して、ブロックを組み合わせていくことで作図する。その後、屋根の形や、家具などを加える。
近年BIM(Building Information Modeling)という概念が登場し、3次元モデルを建物の設計・工程・ライフサイクル全般にわたって活用する取り組みが各国で始まっている。Nemetschek Vectorworks社のVectorworks Architect、Bentley社のBentley Architecture、オートデスク社のRevit、グラフィソフト社のArchiCADなどが代表的であり、日本の建築法規に最適化されたものとしては、福井コンピュータ社よりGLOOBEが登場している。
BIMはIFCと呼ばれるファイルフォーマットに対応し、意匠・構造・設備・積算・施工・維持管理におけるデータを包括することで、建設業界のソフトウェア・アプリケーション間のデータ共有化とその相互運用を可能にする。
国土交通省は2010年度、官庁営繕事業にBIMを試行導入し、設計・施工から維持管理に至る過程で一貫してBIMを活用し、「施設整備・保全に係る行政コストの削減、官庁施設の品質確保、及び官庁施設における顧客満足度の向上」を目指す取り組みを開始している。
日本の住宅や比較的低層の建物に特化したものとして、市販のメーカー建材の価格や仕様の情報までをモデル内に取り込んで設計図から構造計算、積算などまで作成する製品が存在する。 それらの多くは、予め部屋名に対し高さや仕上げの仕様を登録したデータベースと、3次元のモデルと2次元の姿図・詳細図・断面図等がパック化された建具・部品データが存在し、方眼紙を模した画面(平面図)上に部屋や建具・部品を割り付けることで、3次元でモデリングされたパースが作成される仕組みとなっている。
一方、モデリング化したものを一旦立面図や矩計図などに図面化してしまうと、設計変更等で各図面上で再編集をしても元の3次元モデルに反映しない不完全な製品も多い。これは3次元モデルから2次元の図面に変換される際にベクトルデータに分解され、元の3次元データとのリンクが切れてしまうためである。 これらの製品を使用する場合、図面ごとの「整合性」のチェックは従来のJw_cad等の2次元CADと同等の生産性(目視による確認)に落ちることになる。 2010年現在、この問題を回避できる「3次元モデルと2次元データの相互連動」に対応しているのは、福井コンピュータ社のARCHITREND Z、スーパーソフトウェア社の「SuperSoft」IIがある。
一般的に、建築用CADとは意匠設計図を作成するためのCADを指すが、建築設備という専門分野に特化した専用CADも多々存在する。基本機能としては部材記号や配管・配線を表示する線種が標準登録されており、配置・ルートの変更などを容易に行なうことができるなど、さまざまな機能を有している。国内で圧倒的シェア[要出典]を誇るCADWe'll CAPE、後継バージョンのCADWe'll Tfas(株式会社ダイテック)が有名である。他にはCADEWA Real / CRAFT-CAD(株式会社四電工)、Rebro(株式会社NYKシステムズ)、DesignDraft(株式会社シスプロ)、FILDER_PLUS / FILDER Rise(ダイキン工業株式会社)、BrainGear(株式会社ジオプラン)、EQ-II(株式会社マイティネット)、POWERSP(株式会社コモダ工業)、 CustomARCH / i/Draft(株式会社ライトプランニング)、SD-7などもある。作図する図面種類によりシェアが異なり、空調・給排水(衛生)、電気設備の施工図では上述のCADWe'll CAPE/Tfas、設計図ではAutoCADが主流となっている。また、2009年前後よりBIM (英: Building information modeling) に注目が集まり、建築用CAD(意匠、構造)に加え、設備用CADにもBIMへの対応が求められている。
この項目は、コンピュータに関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(PJ:コンピュータ/P:コンピュータ)。 |
|
|
|
Computer-aided design (CAD) is the use of computer systems to aid in the creation, modification, analysis, or optimization of a design.[1] CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing.[2] CAD output is often in the form of electronic files for print, machining, or other manufacturing operations.
Computer-aided design is used in many fields. Its use in designing electronic systems is known as electronic design automation, or EDA. In mechanical design it is known as mechanical design automation (MDA) or computer-aided design (CAD), which includes the process of creating a technical drawing with the use of computer software.[3]
CAD software for mechanical design uses either vector-based graphics to depict the objects of traditional drafting, or may also produce raster graphics showing the overall appearance of designed objects. However, it involves more than just shapes. As in the manual drafting of technical and engineering drawings, the output of CAD must convey information, such as materials, processes, dimensions, and tolerances, according to application-specific conventions.
CAD may be used to design curves and figures in two-dimensional (2D) space; or curves, surfaces, and solids in three-dimensional (3D) space.[4]
CAD is an important industrial art extensively used in many applications, including automotive, shipbuilding, and aerospace industries, industrial and architectural design, prosthetics, and many more. CAD is also widely used to produce computer animation for special effects in movies, advertising and technical manuals, often called DCC digital content creation. The modern ubiquity and power of computers means that even perfume bottles and shampoo dispensers are designed using techniques unheard of by engineers of the 1960s. Because of its enormous economic importance, CAD has been a major driving force for research in computational geometry, computer graphics (both hardware and software), and discrete differential geometry.[5]
The design of geometric models for object shapes, in particular, is occasionally called computer-aided geometric design (CAGD).[6]
Starting around the mid 1970s, as computer aided design systems began to provide more capability than just an ability to reproduce manual drafting with electronic drafting, the cost benefit for companies to switch to CAD became apparent. The benefit of CAD systems over manual drafting are the capabilities one often takes for granted from computer systems today; automated generation of Bill of Material, auto layout in integrated circuits, interference checking, and many others. Eventually CAD provided the designer with the ability to perform engineering calculations. During this transition, calculations were still performed either by hand or by those individuals who could run computer programs. CAD was a revolutionary change in the engineering industry, where draftsmen, designers and engineering roles begin to merge. It did not eliminate departments, as much as it merged departments and empowered draftsman, designers and engineers. CAD is just another example of the pervasive effect computers were beginning to have on industry. Current computer-aided design software packages range from 2D vector-based drafting systems to 3D solid and surface modelers. Modern CAD packages can also frequently allow rotations in three dimensions, allowing viewing of a designed object from any desired angle, even from the inside looking out. Some CAD software is capable of dynamic mathematical modeling, in which case it may be marketed as CAD.
CAD technology is used in the design of tools and machinery and in the drafting and design of all types of buildings, from small residential types (houses) to the largest commercial and industrial structures (hospitals and factories).[7]
CAD is mainly used for detailed engineering of 3D models and/or 2D drawings of physical components, but it is also used throughout the engineering process from conceptual design and layout of products, through strength and dynamic analysis of assemblies to definition of manufacturing methods of components. It can also be used to design objects. Furthermore, many CAD applications now offer advanced rendering and animation capabilities so engineers can better visualize their product designs. 4D BIM is a type of virtual construction engineering simulation incorporating time or schedule related information for project management.
CAD has become an especially important technology within the scope of computer-aided technologies, with benefits such as lower product development costs and a greatly shortened design cycle. CAD enables designers to layout and develop work on screen, print it out and save it for future editing, saving time on their drawings.
It has been suggested that Electrical CAD be merged into this article. (Discuss) Proposed since November 2014. |
Computer-aided design is one of the many tools used by engineers and designers and is used in many ways depending on the profession of the user and the type of software in question.
CAD is one part of the whole Digital Product Development (DPD) activity within the Product Lifecycle Management (PLM) processes, and as such is used together with other tools, which are either integrated modules or stand-alone products, such as:
CAD is also used for the accurate creation of photo simulations that are often required in the preparation of Environmental Impact Reports, in which computer-aided designs of intended buildings are superimposed into photographs of existing environments to represent what that locale will be like, where the proposed facilities are allowed to be built. Potential blockage of view corridors and shadow studies are also frequently analyzed through the use of CAD.
CAD has been proven to be useful to engineers as well. Using four properties which are history, features, parameterization, and high level constraints. The construction history can be used to look back into the model's personal features and work on the single area rather than the whole model. Parameters and constraints can be used to determine the size, shape, and other properties of the different modeling elements. The features in the CAD system can be used for the variety of tools for measurement such as tensile strength, yield strength, electrical or electro-magnetic properties. Also its stress, strain, timing or how the element gets affected in certain temperatures, etc.
There are several different types of CAD,[8] each requiring the operator to think differently about how to use them and design their virtual components in a different manner for each.
There are many producers of the lower-end 2D systems, including a number of free and open source programs. These provide an approach to the drawing process without all the fuss over scale and placement on the drawing sheet that accompanied hand drafting, since these can be adjusted as required during the creation of the final draft.
3D wireframe is basically an extension of 2D drafting (not often used today). Each line has to be manually inserted into the drawing. The final product has no mass properties associated with it and cannot have features directly added to it, such as holes. The operator approaches these in a similar fashion to the 2D systems, although many 3D systems allow using the wireframe model to make the final engineering drawing views.
3D "dumb" solids are created in a way analogous to manipulations of real world objects (not often used today). Basic three-dimensional geometric forms (prisms, cylinders, spheres, and so on) have solid volumes added or subtracted from them, as if assembling or cutting real-world objects. Two-dimensional projected views can easily be generated from the models. Basic 3D solids don't usually include tools to easily allow motion of components, set limits to their motion, or identify interference between components.
There are two types of 3D Solid Modeling
Top end systems offer the capabilities to incorporate more organic, aesthetics and ergonomic features into designs. Freeform surface modeling is often combined with solids to allow the designer to create products that fit the human form and visual requirements as well as they interface with the machine.
Originally software for Computer-Aided Design systems was developed with computer languages such as Fortran, ALGOL but with the advancement of object-oriented programming methods this has radically changed. Typical modern parametric feature based modeler and freeform surface systems are built around a number of key C modules with their own APIs. A CAD system can be seen as built up from the interaction of a graphical user interface (GUI) with NURBS geometry and/or boundary representation (B-rep) data via a geometric modeling kernel. A geometry constraint engine may also be employed to manage the associative relationships between geometry, such as wireframe geometry in a sketch or components in an assembly.
Unexpected capabilities of these associative relationships have led to a new form of prototyping called digital prototyping. In contrast to physical prototypes, which entail manufacturing time in the design. That said, CAD models can be generated by a computer after the physical prototype has been scanned using an industrial CT scanning machine. Depending on the nature of the business, digital or physical prototypes can be initially chosen according to specific needs.
Today, CAD systems exist for all the major platforms (Windows, Linux, UNIX and Mac OS X); some packages even support multiple platforms.
Right now, no special hardware is required for most CAD software. However, some CAD systems can do graphically and computationally intensive tasks, so a modern graphics card, high speed (and possibly multiple) CPUs and large amounts of RAM may be recommended.
The human-machine interface is generally via a computer mouse but can also be via a pen and digitizing graphics tablet. Manipulation of the view of the model on the screen is also sometimes done with the use of a Spacemouse/SpaceBall. Some systems also support stereoscopic glasses for viewing the 3D model.Technologies which in the past were limited to larger installations or specialist applications have become available to a wide group of users.These include the CAVE or HMD`s and interactive devices like motion-sensing technology
Designers[9][10][11][12] have long used computers for their calculations. Digital computers were used in power system analysis or optimization as early as proto-"Whirlwind" in 1949. Circuit[13] design theory, or power network methodology would be algebraic, symbolic, and often vector-based. Examples of problems being solved in the mid-1940s to 50s include, Servo motors controlled by generated pulse (1949), The digital computer with built-in compute operations to automatically co-ordinate transforms to compute radar related vectors (1951) and the essentially graphic mathematical process of forming a shape with a digital machine tool (1952).[14] These were accomplished with the use of computer software. The man credited with coining the term CAD.[15] Douglas T. Ross stated "As soon as I saw the interactive display equipment, [being used by radar operators 1953]. The designers of these very early computers built utility programs so that programmers could debug programs using flow charts on a display scope with logical switches that could be opened and closed during the debugging session. They found that they could create electronic symbols and geometric figures to be used to create simple circuit diagrams and flow charts.[16] They made the pleasant discovery that an object once drawn could be reproduced at will, its orientation, Linkage [ flux, mechanical, lexical scoping ] or scale changed. This suggested numerous possibilities to them. It took ten years of interdisciplinary development[17] work before SKETCHPAD sitting on evolving math libraries emerged from MIT`s labs. Additional developments were carried out in the 1960s within the aircraft, automotive, industrial control and electronics industries in the area of 3D surface construction, NC programming and design analysis, most of it independent of one another and often not publicly published until much later. Some of the mathematical description work on curves was developed in the early 1940s by Robert Issac Newton from Pawtucket, Rhode Island. Robert A. Heinlein in his 1957 novel The Door into Summer suggested the possibility of a robotic Drafting Dan. However, probably the most important work on polynomial curves and sculptured surface was done by Pierre Bézier, Paul de Casteljau (Citroen), Steven Anson Coons (MIT, Ford), James Ferguson (Boeing), Carl de Boor (GM), Birkhoff (GM) and Garibedian (GM) in the 1960s and W. Gordon (GM) and R. Riesenfeld in the 1970s.
The invention of the 3D CAD/CAM is attributed to a French engineer, Pierre Bezier (Arts et Métiers ParisTech, Renault). After his mathematical work concerning surfaces, he developed UNISURF, between 1966 and 1968, to ease the design of parts and tools for the automotive industry. Then, UNISURF became the working base for the following generations of CAD software.
It is argued that a turning point was the development of the SKETCHPAD system at MIT[18][19] by Ivan Sutherland (who later created a graphics technology company with Dr. David Evans). The distinctive feature of SKETCHPAD was that it allowed the designer to interact with his computer graphically: the design can be fed into the computer by drawing on a CRT monitor with a light pen. Effectively, it was a prototype of graphical user interface, an indispensable feature of modern CAD. Sutherland presented his paper Sketchpad: A Man-Machine Graphical Communication System in 1963 at a Joint Computer Conference having worked on it as his PhD thesis paper for a few years. Quoting,"For drawings where motion of the drawing, or analysis of a drawn problem is of value to the user, Sketchpad excels. For highly repetitive drawings or drawings where accuracy is required, Sketchpad is sufficiently faster than conventional techniques to be worthwhile. For drawings which merely communicate with shops, it is probably better to use conventional paper and pencil." Over time efforts would be directed toward the goal of having the designers drawings communicate not just with shops but with the shop tool itself. This goal would be a long time arriving.
The first commercial applications of CAD were in large companies in the automotive and aerospace industries, as well as in electronics. Only large corporations could afford the computers capable of performing the calculations. Notable company projects were, a joint project of GM (Dr. Patrick J.Hanratty) and IBM (Sam Matsa , Doug Ross`s MIT APT research assistant) to develop a prototype system for design engineers DAC-1 (Design Augmented by Computer) 1964; Lockheed projects; Bell GRAPHIC 1 and Renault.
One of the most influential events in the development of CAD was the founding of MCS (Manufacturing and Consulting Services Inc.) in 1971 by Dr. P. J. Hanratty,[20] who wrote the system ADAM (Automated Drafting And Machining) but more importantly supplied code to companies such as McDonnell Douglas (Unigraphics), Computervision (CADDS), Calma, Gerber, Autotrol and Control Data.
As computers became more affordable, the application areas have gradually expanded. The development of CAD software for personal desktop computers was the impetus for almost universal application in all areas of construction.
Other key points in the 1960s and 1970s would be the foundation of CAD systems United Computing, Intergraph, IBM, Intergraph IGDS in 1974 (which led to Bentley Systems MicroStation in 1984).
CAD implementations have evolved dramatically since then. Initially, with 3D in the 1970s, it was typically limited to producing drawings similar to hand-drafted drawings. Advances in programming and computer hardware,[21][22] notably solid modeling in the 1980s, have allowed more versatile applications of computers in design activities.
Key products for 1981 were the solid modelling packages - Romulus (ShapeData) and Uni-Solid (Unigraphics) based on PADL-2 and the release of the surface modeler CATIA (Dassault Systemes). Autodesk was founded 1982 by John Walker, which led to the 2D system AutoCAD. The next milestone was the release of Pro/ENGINEER in 1987, which heralded greater usage of feature-based modeling methods and parametric linking of the parameters of features. Also of importance to the development of CAD was the development of the B-rep solid modeling kernels (engines for manipulating geometrically and topologically consistent 3D objects) Parasolid (ShapeData) and ACIS (Spatial Technology Inc.) at the end of the 1980s and beginning of the 1990s, both inspired by the work of Ian Braid. This led to the release of mid-range packages such as SolidWorks and TriSpective (later known as IRONCAD) in 1995, Solid Edge (then Intergraph) in 1996 and Autodesk Inventor in 1999. An independent geometric modeling kernel has been evolving in Russia since the 1990s.[23] Nikolay Golovanov joined ASCON Company in 1994 from the Kolomna Engineering Design Bureau and began development of C3D – the geometric kernel of the Russian popular CAD system, KOMPAS-3D.[24] Nowadays, C3D (C3D Labs) is the most valued Russian CAD product in the category of "components", i.e. products designed for integration in the end-user CAD systems of Russian and global vendors.[25]
This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (May 2015) |
The following are open sources products used widely[by whom?]:
|
|
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「糖尿病」「溶血性貧血」「糖尿病合併症」「寒冷凝集素症」「冠状動脈疾患」 |
拡張検索 | 「CADASIL」「SCAD」「LCAD」「MCAD」 |
関連記事 | 「C」「CA」 |
糖尿病との関係 | 疾患 | 臨床的特徴 |
糖尿病が直接病因に関与する疾患 | 糖尿病性手関節症(diabetic cheiroarthropathy) | コントロール不良の糖尿病に多い。原因不明の皮膚硬化が徐々に進行し、手指の屈曲拘縮を来し手全体に及び、強皮症と誤診される。手指を合わせることができない(Prayer徴候)。 |
シャルコー関節 | 頻度は低い(1%)が、長期糖尿病コントロール不良患者に多い。通常、足根中足関節などの中足部が多く、足底表面、前足部、中足部に潰瘍形成の合併を認めることがあり、骨髄炎との鑑別が困難な例あり。 | |
糖尿病性骨溶解(diabetic osteolysis) | 原因不明の足趾の末節骨や基節骨の骨吸収が起こリ、足痛の原因となる。X線ではickedcandy変形を呈し、骨髄炎との鑑別が困難。 | |
糖尿病性筋梗塞 | 外傷、感染、腫瘍がなく大腿部などに急激に増大する疼痛を伴う腫瘤を認める。生検は出血の危険があるため行わない。通常1~2カ月で自然寛解する | |
糖尿病性筋萎縮症(diabetic amyotrophy) | 糖尿病性末梢神経障害の一型。大腿前部の痛みで、時に脱力や萎縮が非対称性に起きる。CPKの上昇はなく、脳脊髄液で軽度蛋白上昇以外の有意な所見はない。神経伝導速度.筋電図では神経原性変化を認め、筋生検では炎症細胞浸潤を伴わない筋線経の萎縮あり。 | |
直接の関係は不明だが糖尿病患者に頻度が高い疾患 | 癒着性関節包炎(凍結肩または五十肩) | 糖尿病患者の10-33%にみられる。長期2型糖尿病を有する女性に多く、肩の痛みと可動域障害を呈する。約半数が両側性だが非利き手側で症状が強い。炎症反応やX線異常を認めず、数週~数カ月で自然寛解する。 |
複合性局所疼痛症候群1型(complex regional pain syndrome CRPS) | 四肢の疼痛、皮膚色変化、皮膚温の変化、浮腫、可動域制限などの症候を呈するまれな症候群。 | |
手掌屈筋鍵炎 | 糖尿病患者の5-33%に認められる。長期に罹患した女性に多く、利き手側の母指に頻度(75%)が高いが、どの指にもみられる。 | |
Dupuytren拘縮 | 手掌筋膜の短縮と肥厚(有痛性結節)を生じ、第4、5指の屈曲拘縮を呈する。1型糖尿病で長期に罹患した患者に多いが、血糖コントロールとの関係はない。 | |
手根管症候群 | 手根管症候群の全患者の最大15%に糖尿病を認める。 | |
広汎性特発性骨増殖症(diffuse idiopathic skeletal hyperostosis DISH) | 2型糖尿病患者の約20%にみられ、50才以上の肥満患者に多い。頭部、腰部のこわばリ、関節の可動域制限を呈する。全身の腱付着部痛を呈することもある。 | |
その他 | 感染性関節炎や骨髄炎 | 血糖上昇による免疫力低下が感染症リスクを上昇させることによる |
正常 糖尿病型 空腹時血糖値 <110mg/dL ≧126mg/dL and or 75g OGTT2時間値 <140mg/dL ≧200mg/dL
溶血の種類 | 機序 | 脾腫 | ヘモグロビン尿 ヘモジデリン尿 |
疾患 |
血管外溶血 | Mφで貪食される | + | - | 球状赤血球症 HS 自己免疫性溶血性貧血 AIHA (温式) ↑冷式より多い |
血管内溶血 | 血管内で溶血 | - | + | 自己免疫性溶血性貧血 AIHA (冷式) 発作性夜間ヘモグロビン尿症 PNH G6PD欠損症 赤血球破砕症候群 不適合輸血 |
-冠動脈疾患
-冠動脈疾患
[★] 皮質下梗塞および白質脳症を伴う常染色体優性脳動脈症、カダシル、cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy
.