出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2014/05/24 21:01:24」(JST)
アセトン | |
---|---|
IUPAC名
2-プロパノン(系統名) |
|
識別情報 | |
CAS登録番号 | 67-64-1 |
KEGG | D02311 |
特性 | |
化学式 | C3H6O |
モル質量 | 58.08 |
外観 | 無色液体 |
密度 | 0.788 (25 ℃) [1] |
融点 |
-94[1] |
沸点 |
56.5[1] |
水への溶解度 | 任意に混和する |
酸解離定数 pKa | 20(水中) |
屈折率 (nD) | 1.3591 (20 ℃, D)[1] |
特記なき場合、データは常温 (25 °C)・常圧 (100 kPa) におけるものである。 |
アセトン (acetone) は有機溶媒として広く用いられる有機化合物で、もっとも単純な構造のケトンである。示性式 CH3COCH3、IUPAC命名法では 2-プロパノン (2-propanone) と表される。両親媒性の無色の液体で、水、アルコール類、クロロホルム、エーテル類、ほとんどの油脂をよく溶かす。蒸気圧が20℃で24.7 kPaと高いことから常温で高い揮発性を有し、強い引火性がある。
アセトンは、正常な代謝プロセスの結果として人体で自然に生成され、排出される物質で、生殖毒性試験では、生殖問題を起こす可能性が低いことが明らかになっている。実際に、エネルギー必要量が高いとアセトンの生成レベルも高くなることから、妊婦、授乳中の母親、および小児の体内アセトンのレベルは自然と上昇する。医学界では、難治性てんかんを患う乳児や小児のてんかん発作を減少させるため、体内のアセトンを増加させるケトン食療法が現在行われている.
酢酸カルシウムの乾留や、クメン法によるフェノール製造の過程で、クメンヒドロペルオキシド (C6H5C(CH3)2OOH) の酸分解の段階において、アセトンが副生物として得られる。
また、イソプロピルアルコールを酸化亜鉛などの触媒存在下に脱水素、あるいは空気酸化して得られる酸化物を分解することによっても得られる。プロピンに水を付加することでも得られる。プロピレンをワッカー酸化によってアセトンとする方法も用いられる。
アセトンから出発する有機合成の需要は比較的少なく、クメン法などに伴い副生するアセトンの産量は過剰である。このため価格は安い。
合成アセトンの 2014年度日本国内生産量は 39,049 t、工業消費量は 12,729 t である[2]。
歴史的には、初期の製造法では木材を乾留して得られる木タールを蒸留して得ていたが、この方法では生産量が少なく、アセトンは高価な試薬であった。無煙火薬が発明されるとコルダイトを製造するための溶媒として大量に必要になり需要が激増した。ハイム・ワイツマンが第一次世界大戦中に、砂糖などから得られたデンプンにバクテリアの1種クロストリジウム・アセトブチリクムを作用させるバクテリア発酵法を発明し、イギリス軍に提供した。これがきっかけでバルフォア宣言が出され、後のイスラエル建国が約束され、ワイツマンはイスラエルの初代大統領となった。
危険有害性情報として「引火性の高い液体及び蒸気、眼刺激、生殖能又は胎児への悪影響のおそれの疑い、眠気又はめまいのおそれ、呼吸器への刺激のおそれ、長期又は反復ばく露による血液の障害のおそれ、飲み込み・気道に侵入すると有害のおそれ」、MSDS に「眼の刺激性、中枢神経への影響あり」と表示される。吸引すると頭痛、気管支炎などを引き起こし、大量だと意識を失うこともある。ラットの半数致死量 (LD50) は 10.4 mL/kg(経口)[3]。 ヒト経口推定致死量 50~75mL。
アセトンは様々な一般医学および美容用に使用されており、食品添加物や食品包装の成分としてもリストされている。 アセトンは、医療オフィスやメディカルスパでの肌の活性化プロセスによく使用される。古代エジプト時代から、人々は肌を若返らせるため、ケミカルピーリングとしても知られる化学的表皮剥離法を利用してきた。今日、ケミカルピーリングに使用される一般的な化学物質は、サリチル酸、グリコール酸、サリチル酸 30% を含むエタノール、およびトリクロロ酢酸(TCA)である。化学的表皮剥離法を行う前に、皮膚を適切に洗浄し、余分な脂質は取り除いておく必要がある。この処置は脱脂として知られている。これには、アセトン、Septisol(ヘキサクロロフェン)、またはこれら化学物質の組み合わせがよく使用される。
マニキュアの除光液やプラスチック系接着剤、塗料の溶剤、瞬間接着剤のはがし液など含まれているものは多岐にわたる。 マニキュアの除光液は脱脂性が強いため爪を劣化させることがあり、ノンアセトンタイプの除光液も発売されている。
ほとんどの有機溶媒、水、油と混和するので、本来混じり合わない液体同士を混ぜ合わせる際のカップリング剤となる。加えて、沸点が低く乾きやすいため、有機化学研究の分野で器具の洗浄にも使われる。また、1,2-ジオールのアセトニド保護にも使われる。
その他の用途では、生物学に関連する諸分野で、生物組織の脱水、脱脂、固定などに用いられることがある。人間や動物の遺体を標本にするプラスティネーション処理を行う際には、合成樹脂で固める前に水分と脂肪分を全てアセトンに置き換える。
アセトンは、メタクリル酸メチル (MMA) の原料として用いられる。
溶媒と酸化剤とを兼ねるかたちで、オッペナウアー酸化(Oppenauer oxidation、トリアルコキシアルミニウム触媒により 2級アルコールからケトンを生成する酸化反応)にて用いられる。
アセトンをしかるべき反応条件で酸化させると、過酸化アセトン、あるいはジメチルジオキシランを生じる。
工業においては、単体では容易に分解やそれによる爆発を起こしやすいアセチレンを、ガスボンベ内で安定な状態で保つためにアセトンが使われる。まずガスボンベ内にケイ酸カルシウムを入れ、次にアセトンをボンベ内に入れることでケイ酸カルシウムにアセトンを吸着させる。その吸着しているアセトンにアセチレンを溶解することで、ボンベ内で比較的安定に保つことができる。
アセトンは広範囲にわたって研究されており、経口摂取および/または吸引された場合、低い急性および慢性毒性を持つことが一般的に認識されている。空気中の高濃度アセトン(9200 ppm 前後)の吸引は、早ければ5分以内でヒトの喉に刺激を与えた。濃度1000 ppm を吸引すると、1 時間未満で目と喉に刺激を与えたが、空気中濃度 500 ppm のアセトンの吸引は、2 時間の暴露後もヒトに刺激症状を引き起こさなかった。 現在アセトンは、発癌物質や変異原性化学物質とは見なされておらず、慢性神経毒性作用の懸念もないとされている。 アセトンは化粧品から加工食品や未加工食品まで、様々な消費者製品の成分として使用されている。飲料、焼き菓子、デザートやジャムに濃度 5~8 mg/L の範囲で使用されている場合は、GRAS(一般的に安全と認められる)物質として評価されている。さらに、アメリカとヨーロッパの共同研究により、アセトンの「健康被害はわずか」であることが判明している。 付け爪用リムーバー、除光液、スプレーペイントや染み抜きなど一般的に使用される製品での「当然予期される子供へのアセトンの暴露」に対する広範囲な研究も行われたが、子供の環境、および消費者製品によるアセトンの暴露は、重大な健康リスクを引き起こす可能性は少ないという結果となった。子供の体内に存在するアセトンの 90 パーセントは、体内で自然に生成されるものであることも特定された。残り10 パーセントは、たまねぎ、ブドウ、カリフラワー、トマト、牛乳、チーズ、豆類およびサヤエンドウといった自然食品源のほか、母乳からのものである。
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
ツロブテロールテープ0.5mg「NP」
国試過去問 | 「081A070」「105E014」 |
リンク元 | 「ビスフェノールA」「ケトン体」「アセトン臭」「2-プロパノン」 |
拡張検索 | 「ジヒドロキシアセトンリン酸」「アセトン体」 |
B
D
※国試ナビ4※ [105E013]←[国試_105]→[105E015]
| 構造式=ビスフェノールAの構造式 | IUPAC= 4,4'-(プロパン-2,2-ジイル)ジフェノール
| 別名= 4,4'-ジヒドロキシ-2,2'-ジフェニルプロパン
4,4'-イソプロピリデンジフェノール | 分子式=C15H16O2 | 分子量=228.29 | CAS登録番号=80-05-7 | 形状=淡いベージュ色の固体 | 密度=1.20 | 融点=157 | 融点注= | 沸点=220 | 沸点注=/4 mmHg | SMILES=C(C)(C1=CC=C(O)C=C1)(C2=CC=C(O)C=C2)C | 出典=ICSC
ビスフェノールA (bisphenol A) は2つのフェノール部位を持つ芳香族化合物である。しばしば BPA と略称される。
ビスフェノールAは2当量のフェノールと1当量のアセトンの反応によって合成される。この反応は酸によって触媒されるが、触媒として塩酸のような鉱酸やスルホン酸型の陽イオン交換樹脂(スチレン−ジビニルベンゼン共重合体を硫酸などでスルホン化したもの)のような固体酸が使われる。さらに反応速度や選択性の向上を目的に、チオール化合物のような含硫黄化合物を触媒に共存させることが一般に行われている。 一般に、フェノールは大過剰にして反応を行う。
合成された大過剰のフェノールを含む反応液を冷却すると、ビスフェノールA:フェノール=1:1の付加物結晶(アダクト)が得られるので、これを分離・洗浄した後、結晶を加熱・溶融し、フェノールを蒸留などで除去すると、高純度のビスフェノールAが得られる。工業的にはこれを1〜2ミリ程度の球状に粒子化(プリル)して製品化している。
多くのケトンは同様な縮合反応を起こす。この合成法では副産物が水しか生成しないため効率的である<ref name=Fiege>テンプレート:citation</ref>。
1891年にロシアの化学者ディアニン (A. P. Dianin) によって初めて合成された<ref>Dianin, A. P. (1891). Zhurnal russkogo fiziko-khimicheskogo obshchestva 23: 492.</ref><ref>Zincke, Th. (1905). "Mittheilungen aus dem chemischen Laboratorium der Universität Marburg". Justus Liebigs Ann. Chem. 343: 75–131.</ref>。1930年代には合成エストロゲン(女性ホルモン)の1つとして研究されていたが、当時ジエチルスチルベストロールがエストロゲンとして強い活性を持つことが明らかにされたため、ビスフェノールAが合成エストロゲンとして使われることはなかった。
現在ではポリカーボネート製のプラスチックを製造する際のモノマーや、エポキシ樹脂の原料として利用されている。抗酸化剤、あるいは重合禁止剤としてポリ塩化ビニルの可塑剤に添加される。
ポリカーボネートの用途はサングラスやCDから水・食品の容器まで多くの日用品にわたり、壊れにくいため哺乳瓶にも使われている。歯科治療用の歯の詰め物や、缶詰の内側を被覆するエポキシ樹脂の中にも含まれている。
ポリカーボネートやエポキシ樹脂のようなビスフェノールAを原料とする種類の合成樹脂では、強力な洗剤で洗浄した場合や酸・高温の液体に接触させた場合にビスフェノールA成分が溶け出すことが知られている。アメリカ合衆国での調査では、ヒトからかなりの確率で検出された。
ビスフェノールAを摂取するとエストロゲン受容体が活性化されて、エストロゲン自体に類似した生理作用を表す。1930年代に卵巣を除去したマウスにこの物質を投与する実験が行われ、作用が初めて証明された<ref>Dodds, E. C.; Lawson, W. (1936). Nature 137: 996.</ref><ref>Dodds, E. C.; Lawson, W. (1938). Proc. R. Soc. Lond., B, Biol. Sci. 125: 222–232.</ref>。
ビスフェノールAが、従来の無作用量より遥かに低濃度でのみ毒性を有する、という「低用量仮説」が提唱された。これは従来の薬理学とは全く矛盾する内容であったため、大きな議論となった。
フォム・サール (F. vom Saal) とヒューズ (Claude Hughes) の論文(2004年)によると、合成樹脂の製造業者らが行った検証(11件)ではエストロゲン様作用が認められなかったのに対し、他機関の研究では104例中の約9割で上記の症状が出るという結果となった。これをフォム・サールらは、製造業者らが都合の良い試験結果のみを採用したためであると主張した<ref>vom Saal, F.S.; Hughes, C. (2005). Environ. Health Perspect. 113(8): 926–933. PMID 16079060</ref>。アメリカ・プラスチック協会によって資金を提供されているハーバード・リスク分析センターによる以前の報告では、危険性を証明するにはまだ根拠が乏しく、定量的に証明できていないとされていた。ヒューズはハーバード・リスク分析センターの委員を務めていたが、彼は上記の論文の中で、その見解は時代遅れのものである、なぜなら2001年から出版されている低用量のビスフェノールAに関する多くの論文のうちわずかしか考慮していないからだ、と述べている。
2006年、フォム・サールとウェルションス (Wade V. Welshons) は、製造業者の資金提供によって行われた少数の研究が低用量のビスフェノールAの効果を見落としていた原因について、詳細な分析を報告した<ref>vom Saal, F. S.; Welshons, W. (2006). Environ. Res. 100: 50–76. DOI: 10.1016/j.envres.2005.09.001</ref>。また、アメリカ政府機関によって開設された委員会による再調査によると、それらの論文の1つは実際にはビスフェノールAについての影響を発見していたにも関わらず、この結果を否定する内容になっていた。一部の研究では陽性対照を使っておらず、他の研究との比較によって陰性対照が汚染されていた可能性も示された。さらに、エストロゲンに反応しにくい種類のラットを使用した研究もいくつか存在した。
アメリカ化学工業毒性研究所は、フォン・サールらによる「低容量仮説」を慎重に検証し、彼らの実験結果が再現しないと発表した。またハーバード大学リスク分析センターや各国の政府機関(FDA、EFSA、ECBなど)でも低用量仮説を含めた研究結果を集めて詳細に検討し、ビスフェノールAはヒトの健康に影響がないことを報告している。
現在ではビスフェノールAは、他の「環境ホルモン」疑惑を受けた化合物と同様、通常の摂取条件ではヒトに対して大きな影響を及ぼすものではないという考えが強まっている。ただし生態系への影響、胎児や乳幼児への影響に関してはまだ研究が進行中である<ref>「メディア・バイアス」 松永和紀著(2007年,光文社新書)</ref>。
厚生労働省は、「成人への影響は現時点では確認できない」としながらも、「公衆衛生上の見地から、ビスフェノールAの摂取をできるだけ減らすことが適当」と報道発表(2008年7月8日)した。また、同日に一般消費者向けの「ビスフェノールAについてのQ&A」が公表されている。<ref>ビスフェノールAがヒトの健康に与える影響について,厚生労働省 (2008年7月8日)</ref>
<references />
CH2-OH | C=0 | CH2-O-H2PO4
.