出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/09/21 01:35:21」(JST)
フェノール | |
---|---|
IUPAC名
フェノール |
|
別称
石炭酸
ベンゼノール |
|
識別情報 | |
CAS登録番号 | 108-95-2 |
ChemSpider | 971 |
KEGG | D06536 |
RTECS番号 | SJ3325000 |
SMILES
|
|
InChI
|
|
特性 | |
化学式 | C6H5OH |
モル質量 | 94.11 g/mol |
外観 | 白色の結晶 |
密度 | 1.07 g/cm3 |
融点 |
40.5 °C, 314 K, 105 °F |
沸点 |
181.7 °C, 455 K, 359 °F |
水への溶解度 | 8.3 g/100 ml (20 °C) |
酸解離定数 pKa | 9.95 |
双極子モーメント | 1.7 D |
危険性 | |
EU分類 | 有毒(T) Muta. Cat. 3 |
NFPA 704 |
2
3
0
COR
|
引火点 | 79 °C |
関連する物質 | |
関連物質 | ベンゼンチオール |
特記なき場合、データは常温 (25 °C)・常圧 (100 kPa) におけるものである。 |
フェノール (phenol、benzenol) は、水彩絵具のような特有の薬品臭を持つ有機化合物である。芳香族化合物のひとつで、常温では白色の結晶。示性式は C6H5OHで、ベンゼンの水素原子の一つがヒドロキシル基に置換した構造を持つ。和名は石炭酸(せきたんさん)。
広義には、芳香環の水素原子をヒドロキシ基で置換した化合物全般を指す。これらについてはフェノール類を参照のこと。
毒性および腐食性があり、皮膚に触れると薬傷をひきおこす。絵具に似た臭気を有する。毒物及び劇物取締法により劇物に指定されている。
水に可溶(8.4g/100mL, 20°C)で、アルコールやエーテルには任意の割合で溶ける[1]。
芳香環の共鳴効果によって共役塩基のフェノキシドイオン(またはフェノラートイオン);C6H5O-が安定化されるため、同じくヒドロキシ基を持つアルコール類よりも5桁以上高い酸解離定数 (pKa = 9.95) を示す[2]。ゆえに弱い酸性を示し、カチオン種と共に塩を形成する。フェノール塩はカチオン種名と「フェノキシド」を合わせて命名する(例:ナトリウムフェノキシド)。
フェノールに塩化鉄(III)水溶液を滴下すると鉄フェノール錯体が生成し紫色を呈する。
この反応はフェノール性ヒドロキシル基をもつ化合物の簡易的な検出法として広く用いられている。
フェノールは有機合成化学工業重要な原料である。コールタールから分離するかベンゼンから合成する。ベンゼンからの合成法は、ベンゼンをスルホン化し、そのナトリウム塩をアルカリ融解する、クロロベンゼンとしてから、これを高圧下で水酸化ナトリウム水溶液と加熱する、クメンヒドロペルオキシドとしてから分解する(クメン法)などの方法によって生産される。クメン法の場合、副産物としてアセトンを生じる。フェノールの2008年度日本国内生産量は 771,641t、消費量は 194,594t である[3]。
実験室的製法として、ベンゼンをスルホン化あるいは塩素化した、ベンゼンスルホン酸あるいはクロロベンゼンを、溶融した水酸化ナトリウム中で加熱分解するとフェノールのナトリウム塩(ナトリウムフェノキシド)が得られる。これは電子密度が低下したベンゼン環への水酸化物イオン OH− のipso型の求核置換反応である。スルホ基やクロロ基は電子求引性が大であることと、脱離基として能力が高い為にこの種の反応が起こりやすくなっている。
フェノールはフェノール樹脂に代表されるプラスチックの他、医薬品や染料など各種化成品の原料として広く用いられている。フェノールそのものは希釈して消毒剤などに利用される。
融解温度以上で水と混合すると、常温に冷却しても含水フェノール(液体)とフェノール水溶液の2相に分離する。生物学では、核酸の分離精製にこの含水フェノール液をよく用いる。含水フェノール液は特に腐食性が強く注意が必要。
ナトリウムと反応してナトリウムフェノキシドを生成する。
無水フタル酸と縮合し、フェノールフタレインを生成する。
フェノール水溶液に臭素水溶液を加えると白色の2,4,6-トリブロモフェノールが生成する。
ニトロ化することによりピクリン酸を生成する。フェノールは濃硝酸によって酸化されるので先に濃硫酸でスルホン化を行ってからニトロ化する。
石炭を原料としてコールタールを処理する過程で得られる副産物であることから「石炭酸」の名前で呼ばれていた。 18世紀には消臭剤としての効果が認められ、ゴミや汚水の消臭剤として散布されていた。 ジョゼフ・リスターが初期の消毒薬として使用することで大きな成果を挙げている。これにより、当時手術につきものであった敗血症の発生確率を大幅に下げることに成功した。 医療器具から病院まであらゆる場所の消毒に用いられ、病院にはフェノールを噴霧するための装置が常備されるようになった。しかし、人体に対する毒性があることから後には使用されなくなっている。
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
複方ヨード・グリセリン「東豊」
リンク元 | 「ビスフェノールA」「外皮用殺菌消毒剤」「ノニルフェノール」「中毒」「トリゾール」 |
拡張検索 | 「フェノール・カンフル」「ミコフェノール酸モフェチル」「ブロモフェノールブルー」 |
| 構造式=ビスフェノールAの構造式 | IUPAC= 4,4'-(プロパン-2,2-ジイル)ジフェノール
| 別名= 4,4'-ジヒドロキシ-2,2'-ジフェニルプロパン
4,4'-イソプロピリデンジフェノール | 分子式=C15H16O2 | 分子量=228.29 | CAS登録番号=80-05-7 | 形状=淡いベージュ色の固体 | 密度=1.20 | 融点=157 | 融点注= | 沸点=220 | 沸点注=/4 mmHg | SMILES=C(C)(C1=CC=C(O)C=C1)(C2=CC=C(O)C=C2)C | 出典=ICSC
ビスフェノールA (bisphenol A) は2つのフェノール部位を持つ芳香族化合物である。しばしば BPA と略称される。
ビスフェノールAは2当量のフェノールと1当量のアセトンの反応によって合成される。この反応は酸によって触媒されるが、触媒として塩酸のような鉱酸やスルホン酸型の陽イオン交換樹脂(スチレン−ジビニルベンゼン共重合体を硫酸などでスルホン化したもの)のような固体酸が使われる。さらに反応速度や選択性の向上を目的に、チオール化合物のような含硫黄化合物を触媒に共存させることが一般に行われている。 一般に、フェノールは大過剰にして反応を行う。
合成された大過剰のフェノールを含む反応液を冷却すると、ビスフェノールA:フェノール=1:1の付加物結晶(アダクト)が得られるので、これを分離・洗浄した後、結晶を加熱・溶融し、フェノールを蒸留などで除去すると、高純度のビスフェノールAが得られる。工業的にはこれを1〜2ミリ程度の球状に粒子化(プリル)して製品化している。
多くのケトンは同様な縮合反応を起こす。この合成法では副産物が水しか生成しないため効率的である<ref name=Fiege>テンプレート:citation</ref>。
1891年にロシアの化学者ディアニン (A. P. Dianin) によって初めて合成された<ref>Dianin, A. P. (1891). Zhurnal russkogo fiziko-khimicheskogo obshchestva 23: 492.</ref><ref>Zincke, Th. (1905). "Mittheilungen aus dem chemischen Laboratorium der Universität Marburg". Justus Liebigs Ann. Chem. 343: 75–131.</ref>。1930年代には合成エストロゲン(女性ホルモン)の1つとして研究されていたが、当時ジエチルスチルベストロールがエストロゲンとして強い活性を持つことが明らかにされたため、ビスフェノールAが合成エストロゲンとして使われることはなかった。
現在ではポリカーボネート製のプラスチックを製造する際のモノマーや、エポキシ樹脂の原料として利用されている。抗酸化剤、あるいは重合禁止剤としてポリ塩化ビニルの可塑剤に添加される。
ポリカーボネートの用途はサングラスやCDから水・食品の容器まで多くの日用品にわたり、壊れにくいため哺乳瓶にも使われている。歯科治療用の歯の詰め物や、缶詰の内側を被覆するエポキシ樹脂の中にも含まれている。
ポリカーボネートやエポキシ樹脂のようなビスフェノールAを原料とする種類の合成樹脂では、強力な洗剤で洗浄した場合や酸・高温の液体に接触させた場合にビスフェノールA成分が溶け出すことが知られている。アメリカ合衆国での調査では、ヒトからかなりの確率で検出された。
ビスフェノールAを摂取するとエストロゲン受容体が活性化されて、エストロゲン自体に類似した生理作用を表す。1930年代に卵巣を除去したマウスにこの物質を投与する実験が行われ、作用が初めて証明された<ref>Dodds, E. C.; Lawson, W. (1936). Nature 137: 996.</ref><ref>Dodds, E. C.; Lawson, W. (1938). Proc. R. Soc. Lond., B, Biol. Sci. 125: 222–232.</ref>。
ビスフェノールAが、従来の無作用量より遥かに低濃度でのみ毒性を有する、という「低用量仮説」が提唱された。これは従来の薬理学とは全く矛盾する内容であったため、大きな議論となった。
フォム・サール (F. vom Saal) とヒューズ (Claude Hughes) の論文(2004年)によると、合成樹脂の製造業者らが行った検証(11件)ではエストロゲン様作用が認められなかったのに対し、他機関の研究では104例中の約9割で上記の症状が出るという結果となった。これをフォム・サールらは、製造業者らが都合の良い試験結果のみを採用したためであると主張した<ref>vom Saal, F.S.; Hughes, C. (2005). Environ. Health Perspect. 113(8): 926–933. PMID 16079060</ref>。アメリカ・プラスチック協会によって資金を提供されているハーバード・リスク分析センターによる以前の報告では、危険性を証明するにはまだ根拠が乏しく、定量的に証明できていないとされていた。ヒューズはハーバード・リスク分析センターの委員を務めていたが、彼は上記の論文の中で、その見解は時代遅れのものである、なぜなら2001年から出版されている低用量のビスフェノールAに関する多くの論文のうちわずかしか考慮していないからだ、と述べている。
2006年、フォム・サールとウェルションス (Wade V. Welshons) は、製造業者の資金提供によって行われた少数の研究が低用量のビスフェノールAの効果を見落としていた原因について、詳細な分析を報告した<ref>vom Saal, F. S.; Welshons, W. (2006). Environ. Res. 100: 50–76. DOI: 10.1016/j.envres.2005.09.001</ref>。また、アメリカ政府機関によって開設された委員会による再調査によると、それらの論文の1つは実際にはビスフェノールAについての影響を発見していたにも関わらず、この結果を否定する内容になっていた。一部の研究では陽性対照を使っておらず、他の研究との比較によって陰性対照が汚染されていた可能性も示された。さらに、エストロゲンに反応しにくい種類のラットを使用した研究もいくつか存在した。
アメリカ化学工業毒性研究所は、フォン・サールらによる「低容量仮説」を慎重に検証し、彼らの実験結果が再現しないと発表した。またハーバード大学リスク分析センターや各国の政府機関(FDA、EFSA、ECBなど)でも低用量仮説を含めた研究結果を集めて詳細に検討し、ビスフェノールAはヒトの健康に影響がないことを報告している。
現在ではビスフェノールAは、他の「環境ホルモン」疑惑を受けた化合物と同様、通常の摂取条件ではヒトに対して大きな影響を及ぼすものではないという考えが強まっている。ただし生態系への影響、胎児や乳幼児への影響に関してはまだ研究が進行中である<ref>「メディア・バイアス」 松永和紀著(2007年,光文社新書)</ref>。
厚生労働省は、「成人への影響は現時点では確認できない」としながらも、「公衆衛生上の見地から、ビスフェノールAの摂取をできるだけ減らすことが適当」と報道発表(2008年7月8日)した。また、同日に一般消費者向けの「ビスフェノールAについてのQ&A」が公表されている。<ref>ビスフェノールAがヒトの健康に与える影響について,厚生労働省 (2008年7月8日)</ref>
<references />
| name=ノニルフェノール | 構造式=構造式 | IUPAC=4-Nonylphenol | 別名=p-Nonylphenol | 分子式=C15H24O | 分子量=220.35 | CAS登録番号=104-40-5 | 形状=白色の固体 | 密度=0.94 | 相= | 相対蒸気密度= | 融点=2 | 融点注= | 沸点=295-304 | 沸点注= | 昇華点= | 昇華点注= | SMILES=CCCCCCCCCC1=CC=C(C=C1)O | 出典=
ノニルフェノールはアルキルフェノール類に分類される有機化合物。
プロピレンの三重合体であるノネンとフェノールの合成によって得られる。
ノニオン性界面活性剤の一種であるノニルフェノールエトキシレート(nonylphenol ethoxylates、ノニルフェノールとエチレンオキシドを合成すると得られる)や ゴム用老化防止剤、酸化防止剤のTNPP(Tri nonyl phenyl phosphite)の原料として用いられる。
1991年にタフツ大学のアナ・ソトーとカルロス・ソネンシャインが行った乳癌細胞を増殖させる実験中に、エストロゲンを投与しない試料にも異常増殖がみられた。 ヒト乳癌細胞のMCF-7はエストロゲンが存在するときのみ増殖する。MCF-7が増殖した理由は、弱いエストロゲン様作用を有するノニルフェノールが試験器具から溶出したためと指摘された。<ref>Soto, A.M., Justicia, H., Wray, J.W., Sonnenschein, C., p-Nonyl-phenol : an estrogenic xenobiotic released from "modified" polystyrene. </ref>
イングランド南部にあるリー川において魚の雌雄両性個体がみられた。その原因を究明するため、ブルネル大学のジョン・サンプターとジョブリングは、 複数の河川の下水処理場下流域を中心に、ニジマス中のビテロジェニン濃度と河川水中のノニルフェノール濃度を測定した。 その結果、織物工場で羊毛の洗浄に用いられる洗剤に起因するノニルフェノールが原因の一つである可能性を指摘している。<ref>JP Sumpter, S Jobling.,Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment ,Environ.</ref>
またニジマスに3日間暴露するとエストラジオールの投与と同様のビテロジェニン遺伝子を発現した。<ref>Ren L, Lewis SK, Lech JJ, Effects of estrogen and nonylphenol on the post-transcriptional regulation of vitellogenin gene expression.</ref>
<references/>
.