出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2014/01/21 09:26:35」(JST)
大腸菌 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
大腸菌の電子顕微鏡写真
|
|||||||||||||||||||||
分類 | |||||||||||||||||||||
|
|||||||||||||||||||||
学名 | |||||||||||||||||||||
Escherichia coli (Migula 1895) Castellani and Chalmers 1919 |
大腸菌(だいちょうきん, Escherichia coli)は、グラム陰性の桿菌で通性嫌気性菌に属し、環境中に存在するバクテリアの主要な種の一つである。この菌は腸内細菌でもあり、温血動物(鳥類、哺乳類)の消化管内、特に大腸に生息する。アルファベットで短縮表記でE. coliとすることがある(詳しくは#学名を参照のこと)。
バクテリアの代表としてモデル生物の一つとなっており、各種の研究で材料とされるほか、遺伝子を組み込んで有用な化学物質の生産にも利用される(下図)。
大腸菌のコロニー | グラム染色像 |
大腸菌はそれぞれの特徴によって「株」と呼ばれる群に分類することができる(動物でいう品種のような分類)。それぞれ異なる動物の腸内にはそれぞれの株の 大腸菌が生息していることから、環境水を汚染している糞便が人間から出たものか、鳥類から出たものかを判別することも可能である。大腸菌には非常に多数の株があり、その中には病原性を持つものも存在する。
大腸菌は、菌の表面にある抗原(O抗原とH抗原)に基づいて細かく分類されている[1]。O抗原は細胞壁由来のもので、H抗原はべん毛由来のものである。O抗原は現在約180種類ほどに分類されている[1]。例えば「O157(オーいちごーなな)」という名称は、O抗原としては157番目に発見されたものを持つ菌ということを意味しており[1]、「O111(オーいちいちいち)」はO抗原としては111番目に発見されたものを持つ、ということを意味する。 H抗原は約70種類に分類されている。 なお、さらに細かく分けるとO抗原とH抗原の両方を考慮した分類になる。例えばO157でも、H抗原に関する違いでさらに細かく分類することができ、H7のものとH抗原を持たないものがあるので、「O157:H7」と「O157:H-」という2種類に分けることができる[1]。
ほとんどの 大腸菌は無害だが、いくつかの場合では疾患の原因となることがある。
人体には、血液中や尿路系に侵入した場合に病原体となる。内毒素を産生するため、大腸菌による敗血症は重篤なエンドトキシンショックを引き起こす。敗血症の原因(明らかになる場合)として最も多いのは尿路感染症であるが、大腸菌は尿路感染症の原因菌として最も多いものである。
大腸菌の株は多数報告されており、一部では動物に害となりうる性質を持つものもある。大部分の健康な成人の持っている株では下痢を起こす程度で何の症状も示さないものがほとんどであるが、幼児や病気などによって衰弱している者、あるいはある種の薬物を服用している者などでは、特殊な株が病気を引き起こすことがあり、時として死亡に至ることもある。
大腸菌の株の中でも特に強い病原性を示すものは病原性大腸菌とよばれる。食品衛生学分野では病原大腸菌ともよぶ。
O(オー)111やO157などの腸管出血性大腸菌は牛の腸内に生息しているとされ、保健所は「内臓と他部位の肉は調理器具を使い分けるのが好ましい」としている。
O抗原に基づいた分類でいくつか挙げる。
これらの大腸菌は75度で1分間以上の加熱で死滅する。加熱した焼肉などが原因となる食中毒の感染経路として、「(加熱前の生肉をつまみ)大腸菌の付着した箸から、舐めることで、生肉に付着する菌を飲食してしまうことがある」と、注意喚起されている。
学名(ラテン語名)は Escherichia coli で、属名は発見者のオーストリア人医学者テオドール・エシェリヒ Theodor Escherich にちなみ、これに屈折語尾を加えてラテン語化したもの。種形容語はラテン語で大腸を意味する「colon」の属格「coli」である。学名の正式な読みというものは存在しないが、語源を重視するとエシェリヒア・コリー、語源を無視して属名もラテン語読みするとエスケリキア・コリーとなる。英語ではエシェリキア・コーライと読む。全体として「大腸のエシェリヒ菌」の意を表す。
属名を省略してE. coli(イー・コライ、イー・コリー)と略す表記もある。ただし正式には、これは Escherichia 属が既出の場合に認められる略記である。最初からE. coli と略すのは、文脈から Escherichia 属のことを言っているのが明らかでも、不適切である。
大腸菌属は腸内細菌科のタイプ属として指定されているが、腸内細菌科の学名はEscherichiaceaeではなく、Enterobacteriaceaeとなっている。
この節の加筆が望まれています。 |
腸内に生息する菌であることから、この菌の存在は糞便による水の汚染を示唆し、河川、湖、海水浴場などの環境水の汚れの程度の指標として用いられる。
ヒト一人が一日に排泄する糞便中に含まれる菌体数は、平均で1011から1013個である。ただしヒトの消化管において、大腸菌が全体の微生物に占める割合は極めて少なく、ヒト腸内常在細菌の0.01%以下にすぎない(残りの大部分は、Bacteroides 属やEubacterium 属などの偏性嫌気性菌である)
水の浄化や汚水処理技術の分野では、培養可能な E. coli の量は人間の糞便の混入の程度を示唆するものとして、水の汚染レベルの指標としてかなり早い時期から用いられてきた。研究に使われている E. coli それ自体は無害であり、E. coli がこれらの指標に用いられるのは、他の病原性のある菌(サルモネラなど)よりもこれらの糞便由来の大腸菌の方が遥かに多く含まれるとされるためである。
また、日本の水道法により上水道の浄水からは「検出されてはならない」とされている。
詳細は「大腸菌群」を参照
大腸菌群とは細菌学用語ではなく衛生上の用語である。ラクトース発酵(乳糖分解し、酸とガスを発生)するグラム陰性、好気性・通性嫌気性で芽胞を形成しない桿菌の全てである。E. coliであってもこれに該当しないものが多く存在する。
その多くは汚水菌(クレブジエラ属菌、サイトロバクター属菌、エンテロバクター属菌)や土壌中の非常によく似た性質のバクテリア(よく知られたものとしてはAerobacter aerogenes)が大腸菌群として分類される。なお、病原性大腸菌はこの検査法での検出は非常に困難である。
また、水中に含まれる大腸菌群を数値化したものを大腸菌群数といい、水質汚濁の指標に用いられる。
食品衛生法では大腸菌群陰性とは加熱済み食品の加熱ができているか、加熱後の二次汚染がないかを確認するために食品の規格に規定されている。
また、食品衛生法の規格基準にある検査法(EC培地において44.5℃で増殖し、乳糖を分解してガスを産生するグラム染色陰性、無芽胞の桿菌)で検出する菌を E. coli と記述しているが E. coli であってもこれにあてはまらない菌も多く食品衛生上の行政用語である。これは検査法では大腸菌群の培養温度が異なるだけの糞便性大腸菌群とほぼ同一の内容である。
大腸菌及び大腸菌群の検査には用途に応じて多くの培地が使用される。以下に主な物を列挙する。
この項目「大腸菌」は、真正細菌(バクテリア)に関連した書きかけの項目です。加筆・訂正などをして下さる協力者を求めています。(Portal:生き物と自然/ウィキプロジェクト 生物) |
Escherichia coli | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Kingdom: | Eubacteria |
Phylum: | Proteobacteria |
Class: | Gammaproteobacteria |
Order: | Enterobacteriales |
Family: | Enterobacteriaceae |
Genus: | Escherichia |
Species: | E. coli |
Binomial name | |
Escherichia coli (Migula 1895) |
|
Synonyms | |
Bacillus coli communis Escherich 1885 |
Escherichia coli (/ˌɛʃɨˈrɪkiə ˈkoʊlaɪ/;[1] commonly abbreviated E. coli) is a Gram-negative, facultative anaerobic, rod-shaped bacterium that is commonly found in the lower intestine of warm-blooded organisms (endotherms). Most E. coli strains are harmless, but some serotypes can cause serious food poisoning in their hosts, and are occasionally responsible for product recalls due to food contamination.[2][3] The harmless strains are part of the normal flora of the gut, and can benefit their hosts by producing vitamin K2,[4] and by preventing the establishment of pathogenic bacteria within the intestine.[5][6]
E. coli and other facultative anaerobes constitute about 0.1% of gut flora,[7] and fecal–oral transmission is the major route through which pathogenic strains of the bacterium cause disease. Cells are able to survive outside the body for a limited amount of time, which makes them ideal indicator organisms to test environmental samples for fecal contamination.[8][9] There is, however, a growing body of research that has examined environmentally persistent E. coli which can survive for extended periods outside of the host.[10]
The bacterium can be grown easily and inexpensively in a laboratory setting, and has been intensively investigated for over 60 years. E. coli is the most widely studied prokaryotic model organism, and an important species in the fields of biotechnology and microbiology, where it has served as the host organism for the majority of work with recombinant DNA.
E. coli is Gram-negative, facultative anaerobic and non-sporulating.[11] Cells are typically rod-shaped, and are about 2.0 micrometers (μm) long and 0.25-1.0 μm in diameter, with a cell volume of 0.6–0.7 μm3.[12][13] It can live on a wide variety of substrates. E. coli uses mixed-acid fermentation in anaerobic conditions, producing lactate, succinate, ethanol, acetate and carbon dioxide. Since many pathways in mixed-acid fermentation produce hydrogen gas, these pathways require the levels of hydrogen to be low, as is the case when E. coli lives together with hydrogen-consuming organisms, such as methanogens or sulphate-reducing bacteria.[14]
Optimal growth of E. coli occurs at 37 °C (98.6 °F) but some laboratory strains can multiply at temperatures of up to 49 °C (120 °F).[15] Growth can be driven by aerobic or anaerobic respiration, using a large variety of redox pairs, including the oxidation of pyruvic acid, formic acid, hydrogen and amino acids, and the reduction of substrates such as oxygen, nitrate, fumarate, dimethyl sulfoxide and trimethylamine N-oxide.[16]
Strains that possess flagella are motile. The flagella have a peritrichous arrangement.[17]
E. coli and related bacteria possess the ability to transfer DNA via bacterial conjugation, transduction or transformation, which allows genetic material to spread horizontally through an existing population. This process led to the spread of the gene encoding shiga toxin from Shigella to E. coli O157:H7, carried by a bacteriophage.[18]
Escherichia coli encompasses an enormous population of bacteria that exhibit a very high degree of both genetic and phenotypic diversity. Genome sequencing of a large number of isolates of E. coli and related bacteria shows that a taxonomic reclassification would be desirable. However, this has not been done, largely due to its medical importance[19] and E. coli remains one of the most diverse bacterial species: only 20% of the genome is common to all strains.[20]
In fact, from the evolutionary point of view, the members of genus Shigella (S. dysenteriae, S. flexneri, S. boydii, S. sonnei) should be classified as E. coli strains, a phenomenon termed taxa in disguise.[21] Similarly, other strains of E. coli (e.g. the K-12 strain commonly used in recombinant DNA work) are sufficiently different that they would merit reclassification.
A strain is a sub-group within the species that has unique characteristics that distinguish it from other strains. These differences are often detectable only at the molecular level; however, they may result in changes to the physiology or lifecycle of the bacterium. For example, a strain may gain pathogenic capacity, the ability to use a unique carbon source, the ability to take upon a particular ecological niche or the ability to resist antimicrobial agents. Different strains of E. coli are often host-specific, making it possible to determine the source of fecal contamination in environmental samples.[8][9] For example, knowing which E. coli strains are present in a water sample allows researchers to make assumptions about whether the contamination originated from a human, another mammal or a bird.
A common subdivision system of E. coli, but not based on evolutionary relatedness, is by serotype, which is based on major surface antigens (O antigen: part of lipopolysaccharide layer; H: flagellin; K antigen: capsule), e.g. O157:H7).[22] It is however common to cite only the serogroup, i.e. the O-antigen. At present about 190 serogroups are known.[23] The common laboratory strain has a mutation that prevents the formation of an O-antigen and is thus non-typeable.
Like all lifeforms, new strains of E. coli evolve through the natural biological processes of mutation, gene duplication and horizontal gene transfer, in particular 18% of the genome of the laboratory strain MG1655 was horizontally acquired since the divergence from Salmonella.[24] In microbiology, all strains of E. coli derive from E. coli K-12 or E. coli B strains. Some strains develop traits that can be harmful to a host animal. These virulent strains typically cause a bout of diarrhea that is unpleasant in healthy adults and is often lethal to children in the developing world.[25] More virulent strains, such as O157:H7 cause serious illness or death in the elderly, the very young or the immunocompromised.[5][25]
E. coli is the type species of the genus (Escherichia) and in turn Escherichia is the type genus of the family Enterobacteriaceae, where it should be noted that the family name does not stem from the genus Enterobacter + "i" (sic.) + "aceae", but from "enterobacterium" + "aceae" (enterobacterium being not a genus, but an alternative trivial name to enteric bacterium).[26][27][28]
The original strain described by Escherich is believed to be lost, consequently a new type strain (neotype) was chosen as a representative: the neotype strain is ATCC 11775,[29] also known as NCTC 9001,[30] which is pathogenic to chickens and has an O1:K1:H7 serotype.[31] However, in most studies either O157:H7 or K-12 MG1655 or K-12 W3110 are used as a representative E.coli.
Escherichia coli is a species. A large number of strains belonging to this species have been isolated and characterised. In addition to serotype (vide supra), they can be classified according to their phylogeny, i.e. the inferred evolutionary history, as shown below where the species is divided into six groups.[20][32]
The link between phylogenetic distance ("relatedness") and pathology is small, e.g. the O157:H7 serotype strains, which form a clade ("an exclusive group")—group E below—are all enterohaemorragic strains (EHEC), but not all EHEC strains are closely related. In fact, four different species of Shigella are nested among E. coli strains (vide supra), while Escherichia albertii and Escherichia fergusonii are outside of this group. All commonly used research strains of E. coli belong to group A and are derived mainly from Clifton's K-12 strain (λ⁺ F⁺; O16) and to a lesser degree from d'Herelle's Bacillus coli strain (B strain)(O7).
Salmonella enterica |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The first complete DNA sequence of an E. coli genome (laboratory strain K-12 derivative MG1655) was published in 1997. It was found to be a circular DNA molecule 4.6 million base pairs in length, containing 4288 annotated protein-coding genes (organized into 2584 operons), seven ribosomal RNA (rRNA) operons, and 86 transfer RNA (tRNA) genes. Despite having been the subject of intensive genetic analysis for approximately 40 years, a large number of these genes were previously unknown. The coding density was found to be very high, with a mean distance between genes of only 118 base pairs. The genome was observed to contain a significant number of transposable genetic elements, repeat elements, cryptic prophages, and bacteriophage remnants.[33]
Today, over 60 complete genomic sequences of Escherichia and Shigella species are available. Comparison of these sequences shows a remarkable amount of diversity; only about 20% of each genome represents sequences present in every one of the isolates, while approximately 80% of each genome can vary among isolates.[20] Each individual genome contains between 4,000 and 5,500 genes, but the total number of different genes among all of the sequenced E. coli strains (the pan-genome) exceeds 16,000. This very large variety of component genes has been interpreted to mean that two-thirds of the E. coli pangenome originated in other species and arrived through the process of horizontal gene transfer.[34]
Full sets of E. coli proteins and their interactions have also been isolated and studied. A 2006 study purified 4,339 proteins from cultures of strain K-12 and found interacting partners for 2,667 proteins, many of which had unknown functions at the time.[35] A 2009 study found 5,993 interactions between proteins of the same E. coli strain though this data showed little overlap with that of the 2006 publication.[36]
E. coli normally colonizes an infant's gastrointestinal tract within 40 hours of birth, arriving with food or water or with the individuals handling the child. In the bowel, it adheres to the mucus of the large intestine. It is the primary facultative anaerobe of the human gastrointestinal tract.[37] (Facultative anaerobes are organisms that can grow in either the presence or absence of oxygen.) As long as these bacteria do not acquire genetic elements encoding for virulence factors, they remain benign commensals.[38]
Nonpathogenic Escherichia coli strain Nissle 1917 also known as Mutaflor and Escherichia coli O83:K24:H31 (known as Colinfant[39]) are used as a probiotic agents in medicine, mainly for the treatment of various gastroenterological diseases,[40] including inflammatory bowel disease.[41]
Virulent strains of E. coli can cause gastroenteritis, urinary tract infections, and neonatal meningitis. In rarer cases, virulent strains are also responsible for hemolytic-uremic syndrome, peritonitis, mastitis, septicemia and Gram-negative pneumonia.[37]
UPEC (uropathogenic E. coli) is one of the main causes of urinary tract infections.[42] It is part of the normal flora in the gut and can be introduced in many ways. In particular for females, the direction of wiping after defecation (wiping back to front) can lead to fecal contamination of the urogenital orifices. Anal sex can also introduce this bacteria into the male urethra, and in switching from anal to vaginal intercourse the male can also introduce UPEC to the female urogenital system.[42] For more information, see the databases at the end of the article or UPEC pathogenicity.
In May 2011, one E. coli strain, Escherichia coli O104:H4, has been the subject of a bacterial outbreak that began in Germany. Certain strains of E. coli are a major cause of foodborne illness. The outbreak started when several people in Germany were infected with enterohemorrhagic E. coli (EHEC) bacteria, leading to hemolytic-uremic syndrome (HUS), a medical emergency that requires urgent treatment. The outbreak did not only concern Germany, but 11 other countries, including regions in North America.[43] On 30 June 2011 the German Bundesinstitut für Risikobewertung (BfR) (Federal Institute for Risk Assessment, a federal, fully legal entity under public law of the Federal Republic of Germany, an institute within the German Federal Ministry of Food, Agriculture and Consumer Protection) announced that seeds of fenugreek from Egypt were likely the cause of the EHEC outbreak.[44]
Because of its long history of laboratory culture and ease of manipulation, E. coli also plays an important role in modern biological engineering and industrial microbiology.[45] The work of Stanley Norman Cohen and Herbert Boyer in E. coli, using plasmids and restriction enzymes to create recombinant DNA, became a foundation of biotechnology.[46]
E. coli is a very versatile host for the production of heterologous proteins,[47] and various protein expression systems have been developed which allow the production of recombinant proteins in E. coli. Researchers can introduce genes into the microbes using plasmids which permit high level expression of protein, and such protein may be mass-produced in industrial fermentation processes. One of the first useful applications of recombinant DNA technology was the manipulation of E. coli to produce human insulin.[48]
Many proteins previously thought difficult or impossible to be expressed in E. coli in folded form have also been successfully expressed in E. coli. For example, proteins with multiple disulphide bonds may be produced in the periplasmic space or in the cytoplasm of mutants rendered sufficiently oxidizing to allow disulphide-bonds to form,[49] while proteins requiring post-translational modification such as glycosylation for stability or function have been expressed using the N-linked glycosylation system of Campylobacter jejuni engineered into E. coli.[50][51][52]
Modified E. coli cells have been used in vaccine development, bioremediation, production of biofuels;[53] lighting, and production of immobilised enzymes.[47][54]
E. coli is frequently used as a model organism in microbiology studies. Cultivated strains (e.g. E. coli K12) are well-adapted to the laboratory environment, and, unlike wild type strains, have lost their ability to thrive in the intestine. Many lab strains lose their ability to form biofilms.[55][56] These features protect wild type strains from antibodies and other chemical attacks, but require a large expenditure of energy and material resources.
In 1946, Joshua Lederberg and Edward Tatum first described the phenomenon known as bacterial conjugation using E. coli as a model bacterium,[57] and it remains the primary model to study conjugation.[58] E. coli was an integral part of the first experiments to understand phage genetics,[59] and early researchers, such as Seymour Benzer, used E. coli and phage T4 to understand the topography of gene structure.[60] Prior to Benzer's research, it was not known whether the gene was a linear structure, or if it had a branching pattern.[61]
E. coli was one of the first organisms to have its genome sequenced; the complete genome of E. coli K12 was published by Science in 1997.[33]
The long-term evolution experiments using E. coli, begun by Richard Lenski in 1988, have allowed direct observation of major evolutionary shifts in the laboratory.[62] In this experiment, one population of E. coli unexpectedly evolved the ability to aerobically metabolize citrate, which is extremely rare in E. coli. As the inability to grow aerobically is normally used as a diagnostic criterion with which to differentiate E. coli from other, closely related bacteria, such as Salmonella, this innovation may mark a speciation event observed in the lab.
By evaluating the possible combination of nanotechnologies with landscape ecology, complex habitat landscapes can be generated with details at the nanoscale.[63] On such synthetic ecosystems, evolutionary experiments with E. coli have been performed to study the spatial biophysics of adaptation in an island biogeography on-chip.
Studies are also being performed attempting to program E. coli to solve complicated mathematics problems, such as the Hamiltonian path problem.[64]
The genera Escherichia and Salmonella diverged around 102 million years ago (credibility interval: 57–176 mya), which coincides with the divergence of their hosts: the former being found in mammals and the latter in birds and reptiles.[65] This was followed by a split of the escherichian ancestor into five species (E. albertii, E. coli, E. fergusonii, E. hermannii and E. vulneris.) The last E. coli ancestor split between 20 and 30 million years ago.[66]
In 1885, a German pediatrician, Theodor Escherich, discovered this organism in the feces of healthy individuals and called it Bacterium coli commune due to the fact it is found in the colon and early classifications of Prokaryotes placed these in a handful of genera based on their shape and motility (at that time Ernst Haeckel's classification of Bacteria in the kingdom Monera was in place[67]).[68] Bacterium coli was the type species of the now invalid genus Bacterium when it was revealed that the former type species ("Bacterium triloculare") was missing.[69] Following a revision of Bacterium it was reclassified as Bacillus coli by Migula in 1895[70] and later reclassified in the newly created genus Escherichia, named after its original discoverer.[71]
The genus belongs in a group of bacteria informally known as "coliforms", and is a member of the Enterobacteriaceae family ("the enterics") of the Gammaproteobacteria.[26]
Wikispecies has information related to: Escherichia coli |
Wikimedia Commons has media related to Escherichia coli. |
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
国試過去問 | 「114F072」「114D074」「096A056」「112F064」「097H071」 |
リンク元 | 「細菌」「多発性骨髄腫」「髄膜炎」「腸内細菌科」「尿路感染症」 |
拡張検索 | 「Escherichia coli phage」 |
関連記事 | 「coli」 |
DE
※国試ナビ4※ [114F071]←[国試_114]→[114F073]
ACE
※国試ナビ4※ [114D073]←[国試_114]→[114D075]
B
※国試ナビ4※ [096A055]←[国試_096]→[096A057]
D
※国試ナビ4※ [112F063]←[国試_112]→[112F065]
C
※国試ナビ4※ [097H070]←[国試_097]→[097H072]
β2ミクログロブリン (mg/L) |
5.5 | Stage III | ||
Stage II | ||||
3.5 | Stage I | |||
0 | ||||
0 | 3.5 | |||
アルブミン(g/dL) |
4ヶ月未満 | B群溶連菌(50%) | 大腸菌(25%) | インフルエンザ菌(20%) | リステリア菌(1%) | |
4ヶ月~6歳未満 | インフルエンザ菌(70%) | 肺炎球菌(25%) | |||
6歳~50歳未満 | 肺炎球菌(65%) | インフルエンザ菌(10%) | 髄膜炎菌 | ||
50歳以上 | 肺炎球菌(80%) | 黄色ブドウ球菌 | |||
免疫不全者 | クレブシエラ | 連鎖球菌 | 緑膿菌 | 黄色ブドウ球菌 | 真菌 |
Newborn (0–6 mos) | Children (6 mos–6 yrs) | 6–60 yrs | 60 yrs + |
Streptococcus agalactiae | Streptococcus pneumoniae | Neisseria meningitidis | Streptococcus pneumoniae |
Escherichia coli | Neisseria meningitidis | Enteroviruses | Gram-negative rods |
Listeria | Haemophilus influenzae type B | Streptococcus pneumoniae | Listeria |
Enteroviruses | HSV |
1位 | 2位 | 3位 | |
新生児 | 大腸菌 | B群溶連菌 | リステリア菌 |
小児期(6歳以下) | インフルエンザ菌 | 肺炎球菌 | |
成人 | 肺炎球菌 | 髄膜炎菌 |
年齢 | 病原体 | ||
3ヶ月未満 | B群溶連菌 | 大腸菌 | リステリア菌 |
3ヶ月以上の乳小児 | インフルエンザ菌 | 肺炎球菌 | |
成人 | 肺炎球菌 | 髄膜炎菌 | |
高齢者 | 肺炎球菌 | グラム陰性桿菌 | リステリア菌 |
細菌性髄膜炎 | ウイルス性髄膜炎 | 結核性髄膜炎 | 真菌性髄膜炎 | 癌性髄膜炎 | |
外観 | 混濁 | clear | 水様~ キサントクロミー 日光微塵 |
clear~ 日光微塵 |
clear~ キサントクロミー |
圧 70-180 (mmH2O) |
↑↑ 200~800以上 |
↑ 200~300 |
↑ 200~800 |
↑ 200~800 |
↑ 200~300 |
細胞 0-5 (/mm3) |
500~数百万 | 10~1,000 | 25~1,000 | 25~1,000 | 25~500 |
好中球 | リンパ球 | リンパ球 | リンパ球 | 好中球 | |
タンパク 15-45 mg/dl |
↑↑ 50~1,500 |
↑ 正常~100 |
↑ 50~500 |
↑ 100~500 |
↑ 50~500 |
糖 50-80 mg/dl |
↓↓ 0~40 |
→ 正常 |
↓↓ ~40 |
↓↓ ~40 |
↓ ~40 |
エンテロバクター属 Enterobacter エシェリキア属 Escherichia クレブシエラ属 Klebsiella プロテウス属 Proteus サルモネラ属 Salmonella セラチア属 Serratia シゲラ属 Shigella エルシニア属 Yersinia
属 | 菌種 | 日和見 感染菌 |
感染症 |
Citrobacter | Citrobacter freundii | 尿路感染、骨髄炎、下痢 | |
Edwardsiella | Edwardsiella tarda | ○ | 腸管外感染症 |
Enterobacter | Enterobacter aerogenes | ○ | 肺炎、尿路感染 |
Enterobacter cloacae | |||
Enterobacter gergoviae | |||
Enterobacter sakazakii | 新生児敗血症、髄膜炎 | ||
Escherichia | Escherichia coli | 下痢、腸炎、腸管外感染症(尿路感染症、骨髄炎) | |
Hafnia | Hafnia alvei | 腸管外感染症 | |
Klebsiella | Klebsiella oxytoca | 下痢 | |
Klebsiella pneumoniae | ○ | 肺炎、尿路感染 | |
Kluyvera | Kluyvera ascorbata | ○ | |
Kluyvera cryocrescens | |||
Morganella | Morganella morganii | 尿路感染症 | |
Proteus | Proteus mirabilis | ○ | 尿路感染症 |
Proteus vulgaris | |||
Providencia | Providencia alcalifaciens | 尿路感染症、下痢 | |
Providencia rettgeri | 尿路感染症、下痢 | ||
Providencia stuartii | 尿路感染症 | ||
Salmonella | Salmonella enterica | 腸チフス、急性胃腸炎(食中毒) | |
Serratia | Serratia liquefaciens | ○ | |
Serratia marcescens | |||
Shigella | Shigella boydii | 細菌性赤痢 | |
Shigella dysenteriae | |||
Shigella flexneri | |||
Shigella sonnei | |||
Yersinia | Yersinia enterocolitica | 急性胃腸炎(食中毒)、回腸末端炎、結節性紅斑 | |
Yersinia pestis | ペスト | ||
Yersinia pseudotuberculosis | 腸間膜リンパ節炎、関節炎 |
.