出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2014/03/05 18:42:13」(JST)
Klebsiella pneumoniae | |
---|---|
K. pneumoniae on a MacConkey agar plate. | |
Scientific classification | |
Kingdom: | Bacteria |
Phylum: | Proteobacteria |
Class: | Gamma Proteobacteria |
Order: | Enterobacteriales |
Family: | Enterobacteriaceae |
Genus: | Klebsiella |
Species: | K. pneumoniae |
Binomial name | |
Klebsiella pneumoniae (Schroeter 1886) |
Klebsiella pneumoniae is a Gram-negative, non-motile, encapsulated, lactose-fermenting, facultative anaerobic, rod-shaped bacterium. Although found in the normal flora of the mouth, skin, and intestines,[1] it can cause destructive changes to human lungs if aspirated.
In the clinical setting, it is the most significant member of the Klebsiella genus of Enterobacteriaceae.
Seven species of the Klebsiella genus, with demonstrated similarities in DNA homology are known. These are (1) Klebsiella pneumoniae, (2) Klebsiella ozaenae, (3) Klebsiella terrigena, (4) Klebsiella rhinoscleromatis, (5) Klebsiella oxytoca, (6) Klebsiella planticola, and (7) Klebsiella ornithinolytica. Of these, K oxytoca and K rhinoscleromatis have also been demonstrated in human clinical specimens.
In recent years, klebsiellae have become important pathogens in nosocomial infections.
It is closely related to K. oxytoca from which it is distinguished by being indole-negative and by its ability to grow on both melezitose and 3-hydroxybutyrate. It naturally occurs in the soil, and about 30% of strains can fix nitrogen in anaerobic conditions.[2] As a free-living diazotroph, its nitrogen fixation system has been much-studied.
Members of the Klebsiella genus typically express 2 types of antigens on their cell surface. The first, O antigen is a component of the lipopolysaccharide (LPS), of which 9 varieties exist. The second is K antigen, a capsular polysaccharide with more than 80 varieties.[3] Both contribute to pathogenicity and form the basis for serogrouping.
The Danish scientist Hans Christian Gram (1853–1938), developed the technique now known as Gram staining in 1884 to discriminate between K. pneumoniae and Streptococcus pneumoniae.
Klebsiella was named after the German bacteriologist Edwin Klebs (1834–1913).
Multiple-resistant Klebsiella pneumoniae have been killed in vivo via intraperitoneal, intravenous, or intranasal administration of phages in laboratory tests.[4] While this treatment has been available for some time, a greater danger of bacterial resistance exists to phages than to antibiotics. Resistance to phages may cause a bloom in the number of the microbe in environment as well as among humans (if not obligate pathogenic). This is why phage therapy is used only in conjunction with antibiotics, to supplement their activity instead of replacing it altogether.[5]
K. pneumoniae can cause the disease Klebsiella pneumonia. They cause destructive changes to human lungs via inflammation and hemorrhage with cell death (necrosis) that sometimes produces a thick, bloody, mucoid sputum (currant jelly sputum). These bacteria gain access typically after a person aspirates colonizing oropharyngeal microbes into the lower respiratory tract.
As a general rule, Klebsiella infections are seen mostly in people with a weakened immune system. Most often illness affects middle-aged and older men with debilitating diseases. This patient population is believed to have impaired respiratory host defenses, including persons with diabetes, alcoholism, malignancy, liver disease, Chronic obstructive pulmonary diseases (COPD), glucocorticoid therapy, renal failure, and certain occupational exposures (such as paper mill workers). Many of these infections are obtained when a person is in the hospital for some other reason (a nosocomial infection).
The most common infection caused by Klebsiella bacteria outside the hospital is pneumonia, typically in the form of bronchopneumonia and also bronchitis. These patients have an increased tendency to develop lung abscess, cavitation, empyema, and ural adhesions. It has a high death rate of about 50% even with antimicrobial therapy. The mortality rate can be nearly 100% for persons with alcoholism and bacteremia.
In addition to pneumonia, Klebsiella can also cause infections in the urinary tract, lower biliary tract, and surgical wound sites. The range of clinical diseases includes pneumonia, thrombophlebitis, urinary tract infection (UTI), cholecystitis, diarrhea, upper respiratory tract infection, wound infection, osteomyelitis, meningitis, and bacteremia and septicemia. For patients with an invasive device in their body, contamination of the device becomes a risk; for example, respiratory support equipment and urinary catheters put patients at increased risk. Also, the use of antibiotics can be a factor that increases the risk of nosocomial infection with Klebsiella bacteria. Sepsis and septic shock can follow entry of the bacteria into the blood.
Two unusual infections of note that are from Klebsiella are rhinoscleroma and ozena. Rhinoscleroma is a chronic inflammatory process involving the nasopharynx. Ozena is a chronic atrophic rhinitis that produces necrosis of nasal mucosa and mucopurulent nasal discharge.
Research conducted at King's College, London has implicated molecular mimicry between HLA-B27 and two Klebsiella surface moleculars as the cause of ankylosing spondylitis.[6]
New antibiotic resistant strains of K. pneumoniae are appearing, and it is increasingly found as a nosocomial infection.[7]
Klebsiella ranks second to E. coli for urinary tract infections in older persons. It is also an opportunistic pathogen for patients with chronic pulmonary disease, enteric pathogenicity, nasal mucosa atrophy, and rhinoscleroma. Feces are the most significant source of patient infection, followed by contact with contaminated instruments.
Infection with carbapenem-resistant Enterobacteriaceae (CRE) or carbapenemase-producing Enterobacteriaceae is emerging as an important challenge in health-care settings.[8] One of many carbapenem-resistant Enterobacteriaceae (CRE) is Carbapenem-Resistant Klebsiella pneumoniae (CRKP). Over the past 10 years, a progressive increase in CRKP has been seen worldwide; however, this new emerging nosocomial pathogen is probably best known for an outbreak in Israel that began around 2006 within the healthcare system there.[9] In the USA, it was first described in North Carolina in 1996;[10] since then CRKP has been identified in 41 states;[11] and is recovered routinely in certain hospitals in New York and New Jersey. It is now the most common CRE species encountered within the United States.
CRKP is resistant to almost all available antimicrobial agents, and infections with CRKP have caused high rates of morbidity and mortality, in particular among persons with prolonged hospitalization and those critically ill and exposed to invasive devices (e.g., ventilators or central venous catheters). The concern is that carbapenem is often used as a drug of last resort when battling resistant bacterial strains. The worry is that new slight mutations could result in infections for which there is very little, if anything, healthcare professionals can do to treat patients with resistant organisms.
There are a number of mechanisms of Carbapenem Resistance in Enterobacteriaceae. These include (1) Hyperproduction of ampC beta-lactamase with an outer membrane porin mutation (2) CTX-M extended-spectrum beta-lactamase with a porin mutation or drug efflux, and (3) Carbapenemase production. When Klebsiella pneumoniae bacteria produce the carbapenemase enzyme they are known as KPC-producing organisms or carbapenem-resistant Klebsiella pneumoniae (CRKP).[12]
Put another way, the most important mechanism of resistance by CRKP is the production of a carbapenemase enzyme, blakpc. The gene that encodes the blakpc enzyme is carried on a mobile piece of genetic material (a transposon; the specific transposon involved is called Tn4401), which increases the risk for dissemination. CRE can be difficult to detect because some strains that harbor blakpc have minimal inhibitory concentrations (MICs) that are elevated but still within the susceptible range for carbapenems. Because these strains are susceptible to carbapenems, they are not identified as potential clinical or infection control risks using standard susceptibility testing guidelines. Patients with unrecognized CRKP colonization have been reservoirs for transmission during nosocomial outbreaks.
The extent and prevalence of CRKP within the environment is currently unknown. The mortality rate is also unknown but is suspected to be within a range of 12.5% to as high as 44%.[citation needed] The likelihood of an epidemic or pandemic in the future remains uncertain.
The Centers for Disease Control and Prevention (CDC) released guidance for aggressive infection control to combat CRKP.
Place all patients colonized or infected with CRE or carbapenemase-producing Enterobacteriaceae on contact precautions. Acute-care facilities are to establish a protocol, in conjunction with the guidelines of the Clinical and Laboratory Standards Institute (CLSI) to detect nonsusceptibility and carbapenemase production in Enterobacteriaceae, in particular Klebsiella spp. and Escherichia coli, and immediately alert epidemiology and infection control staff members if identified. All acute-care facilities are to review microbiology records for the preceding 6--12 months to ensure that there have not been previously unrecognized CRE cases. If they do identify previously unrecognized cases, a point prevalence survey (a single round of active surveillance cultures) in units with patients at high risk (e.g., intensive-care units, units where previous cases have been identified, and units where many patients are exposed to broad-spectrum antimicrobials) is needed to identify any additional patients colonized with carbapenem-resistant or carbapenemase-producing Klebsiella spp. and E. coli. When a case of hospital-associated CRE is identified, facilities should conduct a round of active surveillance testing of patients with epidemiologic links to the CRE case (e.g., those patients in the same unit or patients having been cared for by the same health-care personnel).[13]
One specific example of this containment policy could be seen in Israel in 2007.[14] This policy had an intervention period from April, 2007 to May, 2008. A nationwide outbreak of CRE (which peaked in March, 2007 at 55.5 cases per 100,000 patient days) necessitated a nationwide treatment plan. The intervention entailed physical separation of all CRE carriers and appointment of a task force to oversee efficacy of isolation by closely monitoring hospitals and intervening when necessary. After the treatment plan (measured in May, 2008), the number of cases per 100,000 patient days decreased to 11.7. The plan was effective because of strict hospital compliance, wherein each was required to keep detailed documentation of all CRE carriers. In fact, for each increase in compliance by 10%, incidence of cases per 100,000 patient days decreased by 0.6. Therefore, containment on a nationwide scale requires nationwide intervention.
In the United States, the reasons that the CDC is recommending the detection of carbapenem resistance or carbapenemase production only for Klebsiella spp. and E. coli are 1) this facilitates performing the test in the microbiology laboratory without the use of molecular methods and 2) these organisms represent the majority of CRE encountered in the United States.
Effective sterilization and decontamination procedures are important to keep the infection rate of this antibiotic resistant strain, CRKP as low as possible.
As with many bacteria, the recommended treatment has changed as the organism has developed resistances. Klebsiella organisms are often resistant to multiple antibiotics. Current evidence implicates a plasmid as the source of the resistant genes. Klebsiella with the ability to produce extended-spectrum beta-lactamases ESBL are resistant to many classes of antibiotics. The most frequent resistances include resistance to aminoglycosides, fluoroquinolones, tetracyclines, chloramphenicol, and trimethoprim/sulfamethoxazole.[15]
The choice of a specific antimicrobial agent or agents depends on local susceptibility patterns and on the part of the body that is infected. For patients with severe infections, a prudent approach is the use of an initial short course (48-72 h) of combination therapy, followed by a switch to a specific mono-therapy once the susceptibility pattern is known for the specific patient.
If the specific Klebsiella in a particular patient does not have antibiotic resistance, then the antibiotics used to treat such susceptible isolates include ampicillin/sulbactam, piperacillin/tazobactam, ticarcillin/clavulanate, ceftazidime, cefepime, levofloxacin, norfloxacin, gatifloxacin, moxifloxacin, meropenem, and ertapenem. Some experts recommend the use of meropenem for patients with ESBL producing Klebsiella. The claim is that meropenem produces the best bacterial clearing.
The use of antibiotics is usually not enough. Surgical clearing (frequently done as interventional radiology drainage) is often needed after the patient is started on antimicrobial agents. Preventing Klebsiella from spreading: To prevent spreading Klebsiella infections between patients, healthcare personnel must follow specific infection control precautions: [Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings 2007].[16] These precautions may include strict adherence to hand hygiene and wearing gowns and gloves when they enter rooms where patients with Klebsiella–related illnesses are housed. Healthcare facilities also must follow strict cleaning procedures to prevent the spread of Klebsiella.
To prevent the spread of infections, patients also should clean their hands very often, including:
Wikispecies has information related to: Klebsiella pneumoniae |
Wikimedia Commons has media related to Klebsiella pneumoniae. |
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
国試過去問 | 「114C062」「114C061」「114C060」「096D015」「095D057」「105A051」「112F064」「097H071」 |
リンク元 | 「腸内細菌科」「尿路感染症」「日和見感染菌」「クレブシエラ属」「莢膜」 |
関連記事 | 「pneumoniae」 |
A
※国試ナビ4※ [114C061]←[国試_114]→[114C063]
AB
※国試ナビ4※ [114C060]←[国試_114]→[114C062]
A
※国試ナビ4※ [114C059]←[国試_114]→[114C061]
B
※国試ナビ4※ [096D014]←[国試_096]→[096D016]
C
※国試ナビ4※ [095D056]←[国試_095]→[095D058]
BE
※国試ナビ4※ [105A050]←[国試_105]→[105A052]
D
※国試ナビ4※ [112F063]←[国試_112]→[112F065]
C
※国試ナビ4※ [097H070]←[国試_097]→[097H072]
エンテロバクター属 Enterobacter エシェリキア属 Escherichia クレブシエラ属 Klebsiella プロテウス属 Proteus サルモネラ属 Salmonella セラチア属 Serratia シゲラ属 Shigella エルシニア属 Yersinia
属 | 菌種 | 日和見 感染菌 |
感染症 |
Citrobacter | Citrobacter freundii | 尿路感染、骨髄炎、下痢 | |
Edwardsiella | Edwardsiella tarda | ○ | 腸管外感染症 |
Enterobacter | Enterobacter aerogenes | ○ | 肺炎、尿路感染 |
Enterobacter cloacae | |||
Enterobacter gergoviae | |||
Enterobacter sakazakii | 新生児敗血症、髄膜炎 | ||
Escherichia | Escherichia coli | 下痢、腸炎、腸管外感染症(尿路感染症、骨髄炎) | |
Hafnia | Hafnia alvei | 腸管外感染症 | |
Klebsiella | Klebsiella oxytoca | 下痢 | |
Klebsiella pneumoniae | ○ | 肺炎、尿路感染 | |
Kluyvera | Kluyvera ascorbata | ○ | |
Kluyvera cryocrescens | |||
Morganella | Morganella morganii | 尿路感染症 | |
Proteus | Proteus mirabilis | ○ | 尿路感染症 |
Proteus vulgaris | |||
Providencia | Providencia alcalifaciens | 尿路感染症、下痢 | |
Providencia rettgeri | 尿路感染症、下痢 | ||
Providencia stuartii | 尿路感染症 | ||
Salmonella | Salmonella enterica | 腸チフス、急性胃腸炎(食中毒) | |
Serratia | Serratia liquefaciens | ○ | |
Serratia marcescens | |||
Shigella | Shigella boydii | 細菌性赤痢 | |
Shigella dysenteriae | |||
Shigella flexneri | |||
Shigella sonnei | |||
Yersinia | Yersinia enterocolitica | 急性胃腸炎(食中毒)、回腸末端炎、結節性紅斑 | |
Yersinia pestis | ペスト | ||
Yersinia pseudotuberculosis | 腸間膜リンパ節炎、関節炎 |
属 | 菌種 | 感染症 |
Edwardsiella | Edwardsiella tarda | 腸管外感染症 |
Enterobacter | Enterobacter aerogenes | 肺炎、尿路感染 |
Enterobacter cloacae | ||
Enterobacter gergoviae | ||
Klebsiella | Klebsiella pneumoniae | 肺炎、尿路感染 |
Kluyvera | Kluyvera ascorbata | |
Kluyvera cryocrescens | ||
Proteus | Proteus mirabilis | 尿路感染症 |
Proteus vulgaris | ||
Serratia | Serratia liquefaciens | |
Serratia marcescens |
-Klebsiella
[★] Streptococcus pneumoniae、Klebsiella pneumoniae、Mycoplasma pneumoniae、Chlamydia pneumoniae、Chlamydophila pneumoniae
.