出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2012/02/20 12:36:21」(JST)
腸内細菌(ちょうないさいきん)とは、ヒトや動物の腸の内部に生息している細菌のこと。ヒトの腸内には一人当たり100種類以上、100兆個以上の腸内細菌が生息しており、糞便のうち、約半分が腸内細菌またはその死骸であると言われている。宿主であるヒトや動物が摂取した栄養分の一部を利用して生活し、他の種類の腸内細菌との間で数のバランスを保ちながら、一種の生態系(腸内細菌叢、腸内常在微生物叢、腸内フローラ)を形成している。腸内細菌の種類と数は、動物種や個体差、消化管の部位、年齢、食事の内容や体調によって違いが見られるが、その大部分は偏性嫌気性菌であり腸球菌など培養可能な種類は全体の一部であり、VNCの種類も多数存在する。なお、その名称から腸内細菌の代表のように考えられている大腸菌は、全体の0.1%にも満たない。
腸内細菌叢を構成している腸内細菌は、互いに共生しているだけでなく、宿主であるヒトや動物とも共生関係にある。宿主が摂取した食餌に含まれる栄養分を主な栄養源として発酵することで増殖し、同時にさまざまな代謝物を産生する。腸内細菌が発酵によって作り出したガスや悪臭成分がおならの一部になる。腸内細菌は、草食動物やヒトのような雑食動物において食物繊維を構成する難分解性多糖類を短鎖脂肪酸に転換して宿主にエネルギー源を供給したり、外部から侵入した病原細菌が腸内で増殖するのを防止する感染防御の役割を果たすなど、宿主の恒常性維持に役立っている。しかし、腸管以外の場所に感染した場合や、抗生物質の使用によって腸内細菌叢のバランスが崩れた場合には病気の原因にもなる。
目次
|
ヒトをはじめ哺乳動物は、母親の胎内にいる間は、基本的に他の微生物が存在しない無菌の状態にある。生後3-4時間後には、外の環境と接触することによって、あるものは食餌を介して、あるものは母親などの近親者との接触で、あるものは出産時に産道で感染することによって、さまざまな経路で微生物が感染し、その微生物の一部は体表面、口腔内、消化管内、鼻腔内、泌尿生殖器などに定着して、その部位における常在性の微生物になる。一部の原生動物や古細菌を除き、その多くは真正細菌である。一般には常在細菌と総称されることが多い。このうち消化管の下部にあたる、腸管内の常在細菌が腸内細菌である。
腸内細菌は多数の雑多な菌種によって構成され、一人のヒトの腸内には100種以上(一説には500種類とも言う)100兆個の腸内細菌が存在していると言われる。一般にヒトの細胞数は60-70兆個程度と言われており、細胞の数ではそれに匹敵するだけの腸内細菌が存在することになる。ただし細菌の細胞は、ヒトの細胞に比べてはるかに小さいため、個体全体に占める重量比が宿主を上回ることはない。しかし、それでも成人一人に存在する腸内細菌の重量は約1.5 kgにのぼるとされる。腸管内容物を見ると、内容物1gに100億個から1,000億個(1010-1011個)の腸内細菌が存在しており、糞便の約半分は腸内細菌か、またはその死骸によって構成されている。
ヒトや動物の腸は、摂取した食餌を分解し吸収するための器官であるため、生物が生育するのに必要な栄養分が豊富な環境である。このため、体表面や泌尿生殖器などと比較して、腸内は種類と数の両方で、最も常在細菌が多い部位である。この多様な細菌群は、消化管内部で生存競争を繰り広げ、互いに排除したり共生関係を築きながら、一定のバランスが保たれた均衡状態にある生態系が作られる。このようにして作られた生態系を腸内細菌叢(ちょうないさいきんそう)と呼ぶ。なお、この系には細菌だけでなく酵母など菌類や、細菌に感染するファージなども混在してバランスを形成しているため、腸内常在微生物叢、腸内フローラ、腸内ミクロフローラなどという用語がより厳密ではあるが、一般にはこれらの細菌以外の微生物も含めて腸内細菌叢と呼ばれることが多い。
ヒトや動物が摂取した食餌は、口、食道、胃を経て、十二指腸などの小腸上部に到達し、その後、宿主に栄養分を吸収されながら、大腸、直腸へと送り出される。このため、消化管の場所によって、その内容物に含まれる栄養分には違いが生じる。また消化管に送り込まれる酸素濃度が元々高くないのに加えて、腸管上部に生息する腸内細菌が呼吸することで酸素を消費するため、下部に進むほど腸管内の酸素濃度は低下し、大腸に至るころにはほとんど完全に嫌気性の環境になる。このように同じ宿主の腸管内でも、その部位によって栄養や酸素環境が異なるため、腸内細菌叢を構成する細菌の種類と比率は、その部位によって異なる。一般に小腸の上部では腸内細菌の数は少なく、呼吸と発酵の両方を行う通性嫌気性菌の占める割合が高いが、下部に向かうにつれて細菌数が増加し、また同時に酸素のない環境に特化した偏性嫌気性菌が主流になる。
また、胆汁酸が界面活性剤として細菌の細胞膜を溶解する作用により[1][2]小腸内や胆管での腸内細菌叢の形成を妨げている。毎日、合計で20-30gの胆汁酸が腸内に分泌され、分泌される胆汁酸の90%は回腸で能動輸送され再吸収され再利用され、腸管から肝臓や胆嚢に抱合胆汁酸が移動することを、腸肝循環と呼んでいる。殺菌作用のある胆汁酸が回腸でほとんど吸収されるため、腸内細菌は回腸以降の大腸を主な活動場所としている。
消化管の部位の違いによるヒト腸内細菌の数(内容物1gあたり)はおよそ以下の通りである。糞便に排出される菌の組成は、大腸のものに類似している。
これらの腸内細菌の組成には個人差が大きく、ヒトはそれぞれ自分だけの細菌叢を持っていると言われる。ただしその組成は不変ではなく、食餌内容や加齢など、宿主であるヒトのさまざまな変化によって細菌叢の組成もまた変化する。
例えば、母乳で育てられている乳児と人工のミルクで育てられている乳児では、前者では、ビフィズス菌などのBifidobacterium属の細菌が最優勢で他の菌が極めて少なくなっているのに対して、後者ではビフィズス菌以外の菌も多く見られるようになる。このことが人工栄養児が母乳栄養児に比べて、細菌感染症や消化不良を起こしやすい理由の一つだと考えられている。
乳児が成長して離乳食をとるようになると、Bacteroides属やEubacterium属など、成人にも見られる嫌気性の腸内細菌群が増加し、ビフィズス菌などは減少する。さらに加齢が進み、老人になるとBifidobacterium属の数はますます減少し、かわりにLactobacillus属や腸内細菌科の細菌、ウェルシュ菌(Clostridium perfringens)などが増加する。
腸内細菌はヒトだけでなく、消化管を有するさまざまな動物にも存在するが、その組成は動物種によって異なる。基本的にはいずれもBacteroides属などの偏性嫌気性菌が優勢であるが、ヒト、サル、ニワトリなどでは乳酸菌としてビフィズス菌の仲間が多いのに対して、ブタ、マウス、イヌなどでは乳酸桿菌(Lactobacillus)が多く、ネコ、ウサギ、ウシなどではどちらの乳酸菌も少ない。
腸内細菌を善玉菌と悪玉菌に分類することが腸内環境の説明に使われることがある。前者は宿主の健康維持に貢献し、後者は害を及ぼすとされる。
この考えは19世紀終わりにイリヤ・メチニコフが発表した「自家中毒説」に端を発している。小腸内で毒性を発揮する化合物が産生されたことが発見され、それが腸から体内に吸収されることがさまざまな疾患や老化の原因だと考えた。腸内の腐敗は寿命を短くするという仮説を立て、腸内腐敗を予防すれば老化を防止できると考えた。ヨーロッパ各地を遊説中に、長寿国であったブルガリアでヨーグルトが摂食されていることを見出し、そこから分離した「善玉菌」である乳酸菌(ブルガリア菌)を摂取することによって、腸内の腐敗物質が減少することを確認した。
その後の研究によって、腸内細菌と宿主であるヒトの共生関係が徐々に明らかになり、また腸内細菌叢のバランスの変化が感染症や下痢症などの原因になりうることが明らかになったことから、腸内細菌叢のバランスを変化させることによってヒトの健康改善につながるという考えが改めて支持されるようになった。そして、がん、心臓病、アレルギー、痴呆症のような病気との関連性も高いと分かっている[3]。
善玉菌と呼ばれるものにはビフィズス菌に代表されるBifidobacterium属や、乳酸桿菌と呼ばれるLactobacillus属の細菌など乳酸や酪酸など有機酸を作るものが多く、悪玉菌にはウェルシュ菌に代表されるClostridium属や大腸菌など、悪臭のもととなるいわゆる腐敗物質を産生するものを指すことが多い。悪玉菌は二次胆汁酸やニトロソアミンといった発がん性のある物質を作る。悪玉菌は有機酸の多い環境では生育しにくいものも多い。
日本では、科学的根拠がある特定保健用食品(トクホ)には食品の機能の表示が認可されている。認可された食品はヨーグルトとして乳酸菌を含んでおり、食品の摂取によって便秘や下痢の改善、善玉菌に分類される菌が増殖し有機酸が増え、悪玉菌が減少しアンモニアが減ったため腸内環境が改善されたことを示す研究結果が多い[4]。
肉は大豆よりアンモニアを多く作るので、アンモニアが肝臓で処理できず脳にまわる肝臓障害の場合、回復させるために肉の摂取が制限されることがある[5]。
ほかに生きたまま腸内に到達可能な乳酸菌(プロバイオティクス)や、腸内の善玉菌が栄養源に利用できるが悪玉菌は利用できない物質(オリゴ糖など、プレバイオティクス)を、製剤や機能性食品として用いることが考案され、多くの製品が開発・実用化されている。
トクホに認可された食品には、研究によって血圧や血清コレステロールの低下が確認された製品がある。花粉症などのアレルギー症状が軽減されるという研究報告もある[6]。がんの予防効果を謳った健康食品まで見受けられる(薬事法違反)。整腸と関連したがんやアレルギーなど、様々な疾患を抑制する作用の特許出願が行われている[7]
ヒトの消化管は自力ではデンプンやグリコーゲン以外の食物繊維である多くの多糖類を消化できないが、大腸内の腸内細菌が嫌気発酵することによって、一部が酪酸やプロピオン酸のような短鎖脂肪酸に変換されてエネルギー源として吸収される。デンプンは約4kcal/g のエネルギーを産生するが、食物繊維は腸内細菌による醗酵分解によってエネルギーを産生し、その値は一定でないが、有効エネルギーは0~2kcal/gであると考えられている。また、食物繊維の望ましい摂取量は、成人男性で19g/日以上、成人女性で17g/日以上である[8]。食物繊維は、大腸内で腸内細菌によりヒトが吸収できる分解物に転換されることから、食後長時間を経てから体内にエネルギーとして吸収される特徴を持つ[9]。
小腸では栄養素を吸収しても、小腸組織の代謝には流用されずに即座に門脈によって運び去られ、小腸自体の組織は動脈血によって供給される栄養素によって養われる。しかし、大腸の組織の代謝にはこの発酵で生成されて吸収された短鎖脂肪酸が主要なエネルギー源として直接利用され、さらに余剰部分が全身の組織のエネルギー源として利用される。
ウマなどの草食動物ではこの大腸で生成された短鎖脂肪酸が主要なエネルギー源になっているが、ヒトでも低カロリーで食物繊維の豊富な食生活を送っている場合にはこの大腸での発酵で生成された短鎖脂肪酸が重要なエネルギー源となっている[10]。
酪酸菌は、酪酸を生成する偏性嫌気性芽胞形成グラム陽性桿菌である。クロストリジウム属のタイプ種でもある。芽胞の形で環境中に広く存在しているが、特に動物の消化管内常在菌として知られている。日本では宮入菌と呼ばれる株が酪酸菌の有用菌株として著名であり、芽胞を製剤化して整腸剤として用いられている[11]。
ビタミンKは食物からの摂取と並んで、幾つかの種類に属する複数腸内細菌によっても供給される。ビタミンKは血液凝固作用(止血)にも関係し、これが不足すると各種内出血といった欠乏症が発生する。ヒト成人に於いては通常、腸内細菌による供給だけでも充分必要量を賄えるが、生まれたばかりのヒト新生児では、まだ充分に腸内細菌叢が形成されて居ないため、これを充分に生産出来ない事から、腸内出血(血便)などの異常が発生しやすく、また抗生物質の投与により腸内細菌叢が損なわれた際には、同様に欠乏症が発生し得る。
産科では、出生時、出生1週間、一か月健診などの頃合いでビタミンKシロップを投与している[12]。 厚生労働省は、ビタミンKの欠乏に陥りやすい新生児には出生直後1ヶ月以内に計3回ビタミンKを経口投与するよう指針で促しているにも関わらず、ホメオパシー団体に所属する助産師がビタミンKの代わりに「ビタミンKのレメディ」なるものを投与し、新生児はビタミンK欠乏性出血症で生後2ヶ月で死亡した。母子手帳には「ビタミンK投与」と偽って記載したために健診で医師も気づかなかった[13][14][15][16]。
なおビタミンKは骨のカルシウム定着にも関係しており、不足する事で骨粗鬆症の弊害も起き得るとされる。食品ではチーズや発酵食品の納豆等に豊富に含まれ、新生児を含む乳幼児では母乳などを介して摂取されている。
ビオチン(ビタミンB7)の一日の目安量は、成人で45μg。腸内細菌叢により供給されるため、通常の食生活において欠乏症は発生しない[17]。
ビタミンB6も腸内細菌により供給されている[18]。
肝臓においてグルクロン酸転移酵素によりヘムの分解物であるビリルビンはグルクロン酸の抱合を受け、水に溶けるようになる。抱合型ビリルビンはほとんどが胆汁の一部となって小腸に分泌される。抱合型ビリルビンの一部は大腸に達し、腸内細菌の働きにより還元されてウロビリノーゲンに代謝され、腸から再吸収され、腎臓を経て、尿として排泄される。この循環を腸肝ウロビリノーゲンサイクルと呼ぶ。ウロビリノーゲンは、抗酸化作用を有し、DPPHラジカル除去作用は他の抗酸化物質(ビタミンE、ビリルビン及びβ-カロチン)よりも高い値を示す[19][20]。 腸内に残るウロビリノーゲンはさらに還元されてステルコビリノーゲンになり、別の部位が酸化されて最終的にはステルコビリンになる。このステルコビリンは大便の茶色の元である。ウロビリノーゲンの一部は再吸収されて、ウロビリノーゲンが酸化さると黄色のウロビリンとなり尿から排泄される[21]。
なお、ビリルビンが体内に蓄積されると黄疸になる。
新生児においては生理的黄疸という言葉があるように、黄疸が出現しても正常な状態がある。これは新生児の生理学的な特徴から理解されている。胎児期は肝機能が未熟であるために胎児肝は殆どビリルビンのグルクロン酸抱合を行わない。胎児期は胎盤で母体血に非抱合型ビリルビンを渡すことで高ビリルビン血症を防いでいる。出生後はヘムの分解によるビリルビンの産出、肝臓の機能が未熟ということが重なって生理的黄疸が発生すると考えられている[22]。新生児で腸内細菌が十分に機能していなくてビリルビンがウロビリノーゲンに代謝できないことも黄疸となる大きな原因である。なお、重症な黄疸の新生児は核黄疸を発症し、脳障害の後遺症を残す[23]。
健康なヒトの腸内にはたくさんの種類の微生物が生息しており、ほぼすべての人の腸内からは、ラクトバシラス属やビフィドバクテリウム属の乳酸菌が検出される。これらの乳酸菌は、俗に言う「腸内の善玉菌」の一種として捉えられる場合が多く、腸内常在細菌叢(腸内フローラ)において、これらの細菌の割合を増やすことが健康増進の役に立つという仮説が立てられている。ただしその有効性については、意義があるとする実験結果と関連が認められないとする結果がそれぞれ複数得られており、結論が出ていないのが現状である[24]。 #善玉菌と悪玉菌を参照のこと。
en:Gut flora#Immunityを参照のこと。
en:Gut flora#Preventing allergyを参照のこと。
リトコール酸(Lithocholic acid)は、脂質を可溶性にして吸収を高める界面活性剤の役割をする胆汁酸の一種である。結腸内において微生物の活動により一次胆汁酸であるケノデオキシコール酸から二次胆汁酸として生合成される。この反応は一部の腸内細菌が有する胆汁酸-7α-デヒドロキシラーゼによってリトコール酸が生成される。腸内細菌の総菌数の1〜10パーセント程度の多くの菌株が低い胆汁酸-7α-デヒドロキシラーゼ生産能を有することが確認されている[25]。リトコール酸は、人や実験動物に発癌をもたらすとされている[26]。
アノイリナーゼ(=チアミナーゼ)は、ビタミンB1を分解する酵素である。アノイリナーゼは、ワラビ、ぜんまい、コイ、フナなどの淡水魚の内臓、はまぐりなどに含まれる。また、加熱すれば通常この酵素は失活する。アノイリナーゼを産生するアノイリナーゼ菌を腸内細菌として保有しているヒトも数パーセント存在しているといわれている。ただし、この菌を保菌していたとしても、ビタミンB1欠乏症である脚気の自覚症状、他覚症状を呈することはほとんどない[27]。
硝酸態窒素を含む肥料が大量に施肥された結果、地下水が硝酸態窒素に汚染されたり、葉物野菜の中に大量の硝酸態窒素が残留するといったことが起こっている。人間を含む動物が硝酸態窒素を大量に摂取すると、腸内細菌により亜硝酸態窒素に還元され、これが体内に吸収されて血液中のヘモグロビンと結合してメトヘモグロビンを生成してメトヘモグロビン血症などの酸素欠乏症を引き起こす可能性がある上、2級アミンと結合して発ガン性物質のニトロソアミンを生じる問題が指摘されている[28][29]。 野菜類に主に肥料由来の硝酸塩、亜硝酸塩が多く含まれることがある。市販漬物中には硝酸塩、亜硝酸塩が多く、なかでも葉菜類が最も高く、次いで根菜類、果菜類の順に多かった旨の報告がある[30]。IARC発がん性リスク一覧では、「アジア式野菜の漬物 (Pickled vegetables (traditional in Asia) )」が、Group2B(ヒトに対する発癌性が疑われる(Possibly Carcinogenic)化学物質、混合物、環境)としてとりあげられている[31]。アジア式野菜の漬物とは、中国、韓国、日本の伝統的な漬物を意味しており、低い濃度のニトロソアミン等が検出されている[32]。
無菌動物とは、体内および体表に微生物(ウイルスや寄生虫を含む)が存在しない動物(現実的には検出可能な全ての微生物が存在しない動物)のことである。無菌動物はウイルス、細菌、寄生虫などの要因を制御するために無菌のアイソレータ内で飼育される[33] 。無菌動物は、盲腸の容積が大きく、寿命が長いなどの特徴を有する[34]。
腸内細菌には大型動物に利益をもたらす面も害をなす面もあるが、どちらが大きいのかについては不明である。無菌動物の場合、寿命が普通個体よりも長いので、総計すれば害の方が大きい、との説もある[35]。
腸内細菌の最初の発見は、微生物そのものが発見されたのと同時期に、レーウェンフックによって行われた。レーウェンフックは1674年から、自分で作製した顕微鏡を使って環境中のさまざまなものを観察し、細菌などの微生物を発見したが、彼はヒトや動物の糞便についても観察し、腸内細菌をスケッチしている。
1876年にロベルト・コッホが炭疽菌の純粋培養に成功したのをきっかけにさまざまな細菌が分離されるようになったが、当時のヨーロッパではコレラや腸チフスなどの消化器感染症が流行しており、その患者から病原菌を分離するときに同時に分離されてくる、健常者にも存在する常在菌として、大腸菌(1885年)など、いくつかの腸内細菌科の細菌が分離同定された。しかしこの当時はまだ、酸素に触れると死んでしまう偏性嫌気性菌の存在についてあまり知られていなかったため、実際に培養できたのは腸内細菌の10%にも満たなかった。残りの大部分である、培養できない偏性嫌気性菌については、死んだ菌の残骸であると考えられていた。
1880年代に、未消化タンパク質の腐敗によって発生した毒性を示す化合物が小腸から発見された[36]。イリヤ・メチニコフが自家中毒説として発展させ、毒素が腸から吸収され寿命を縮めると仮定し、19世紀終わりごろには大衆に広く知られるようになった[37]。
1899年、パスツール研究所の研究員であったティシエは、母乳栄養児の糞便から偏性嫌気性菌であるビフィズス菌を分離した。この当時、母乳と人工乳のどちらが与えられるかによって新生児の発育や死亡率などに違いがあり、母乳栄養児の方が健康状態がよいということが知られていた。ティシエはこの違いを明らかにするために糞便中に分離される腸内細菌に着目し、当時はまだ技術的に未熟であった嫌気培養法によってビフィズス菌の分離に成功して、母乳栄養児にこの菌が多く見られることを明らかにした。この発見によって、腸内細菌が宿主の健康に関与していることが注目されるようになり、また20世紀初頭にかけて、多くの偏性嫌気性菌の分離が行われるようになった。
1904年、イリヤ・メチニコフはパスツール研究所の副所長に就任した。1907年『不老長寿論』という著書を出版した。これは、ブルガリアに長寿者が多いことから端を発する説で、乳酸菌を摂取させたところ腐敗物質が減少したので、毒素が発生する(自家中毒になる)のを防止するために乳酸菌を摂取すれば長寿になる、というものである。ブルガリアの乳酸菌の他に、ケフィアや酢漬け、塩漬けの食品によって人々は知らずのうちに乳酸菌を摂取していることを指摘している[38]。メチニコフは1908年に、細胞性免疫を発見し、食細胞説を提唱した功績でノーベル生理・医学賞を受賞したため、不老長寿説は受賞とは無関係な研究であったものの脚光を浴びることになった[要出典]。しかし、後にメチニコフが提示した乳酸菌(ブルガリア菌)はその大部分が胃で殺菌されてしまい、腸には到達しないことが明らかになり、また同時に、腸内の腐敗物質だけでは老化やさまざまな疾患発生が説明できないことも明らかになったため、この説は下火になった[要出典]。
1918年、ジョン・ハーヴェイ・ケロッグは『自家中毒』[39]という著書を出版し、自家中毒説をもとに未消化の肉には毒を作り出す細菌が繁殖し、毒によって体の不調を招くという理由で菜食を勧めていった。またケロッグはシリアル食品を開発し、食物繊維は腸を刺激して毒を発生させる時間を短くすることにより健康にとって重要であるという宣伝を行なったため、大衆に食物繊維の重要性が認知されていった[37]。
1950年頃、腸内細菌の役割について宿主との共生という観点からの研究が再び盛んになり、嫌気培養技術が大きく発展したことも手伝って、細菌叢調査法が発展し、その実態解明が進んだ。腸内常在微生物叢が宿主の健康に関与していることも次第に明らかになった。腸内細菌バランスに介入することで健康維持を図ろうとする製剤、あるいは健康食品の開発が行われるようになった。
1965年、リリーらによってプロバイオティクスとして提唱され[40]、以降、乳酸菌を用いた醗酵食品を腸内に到達させる研究が進んでいった。
1995年、有用な腸内細菌を増殖させる物質としてプレバイオティクスという概念が提唱される[41]。プレバイオティクスの代表的なものには食物繊維やオリゴ糖がある。プロバイオティクスとプレバイオティクスの両方の機能を併せ持った食品はシンバイオティクスと呼ばれる。
[ヘルプ] |
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
国試過去問 | 「105E043」「101C028」 |
リンク元 | 「細菌の鑑別」「ビタミンK」「誤嚥性肺炎」「enterobacteria」「enteric bacteria」 |
拡張検索 | 「腸内細菌科」「グラム陰性腸内細菌」「腸内細菌科感染症」「腸内細菌叢」 |
関連記事 | 「細菌」「菌」「腸内」 |
C
※国試ナビ4※ [105E042]←[国試_105]→[105E044]
D
※国試ナビ4※ [101C027]←[国試_101]→[101C029]
菌種 | 形態 | 抗酸性 | 芽胞 | 運動性 | 空気中での発育 | 嫌気条件下での発育 | カタラーゼ | オキシダーゼ | ブドウ糖分解 | OF試験 |
Micrococcus | C | - | - | - | + | - | + | - | D | O/- |
Staphylococcus | C | - | - | - | + | + | + | - | + | F |
Aerococcus | C | - | - | - | + | W | W/- | - | + | F |
Streptococcus | C | - | - | +/- | + | + | - | - | + | F |
Pediococcus | C. | - | - | - | + | + | - | - | + | F |
Gemella | ||||||||||
嫌気性球菌*1 | C | - | - | - | - | + | - | - | +/- | F/- |
Kurthia | R | - | - | + | + | + | + | - | - | - |
Corynebacterium | R | - | - | - | + | + | + | - | +/- | F/- |
Listeria | R | - | - | + | + | + | + | - | + | F |
Erysipelothnx | R | - | - | + | + | + | F | |||
Lactobacillus | ||||||||||
Arachnia*2 | ||||||||||
Rothia | R | - | - | - | + | - | + | ● | + | F |
Propiombacterium | R | - | - | - | - | + | + | . | + | F |
Achnomyces | R | - | - | - | - | + | - | ● | + | F |
Bifidobacterium | ||||||||||
Eubacterium | R | - | - | - | - | + | - | . | +/- | F/- |
Clostridium | R | - | <+> | D | - | + | - | ● | D | F/- |
Bacillus | R | - | <+> | D | + | D | + | d | D | F/O/- |
Nocardia | R | W | - | - | + | - | + | - | + | O |
Mycobacterium | R | + | - | - | + | . | + | - | + | O/NT |
*1:Peptococcus, Peptostreptococus(あるいは Leuconostoc) *2:あるいはActinomyces odontolyticus D:その属の菌種によって反応が異なる。 d: 菌種によって反応が異なる。 F:発酵 O:酸化 W:弱反応 ・:不明 NT:テストできない <+>:芽胞非形成筋もある C:球菌 R:桿菌 |
菌種 | 形態 | 運動性 | 空気中での発育 | 嫌気条件下での発育 | カタラーゼ | オキシダーゼ | ブドウ糖(酸) | OF試験 |
Bacteroides | R | - | - | + | d | - | D | F/- |
Veillonella | C | - | - | + | D | ・ | - | - |
Neissena | C | - | + | - | + | + | + | O |
Branhamella | C | - | + | - | + | + | - | - |
Acinetobacter | C/R | - | + | - | + | - | + | O |
Moraxella | R | - | + | + | + | - | ||
Brucella | ||||||||
Bordetella | ||||||||
Chromobacterium lividum | R | + | + | - | + | + | + | O |
Alcahsenes | R | + | + | - | + | + | - | - |
Flavobacterium | R | - | + | - | + | + | + | O |
Pseudomonas | R | + | + | + | + | + | + | O |
Actinobacillus | R | - | + | + | + | + | + | F |
Pasteurella | ||||||||
Necromonas | ||||||||
Cardiobacterium | R | - | + | + | - | + | + | F |
Chromobacterium violaceum | ||||||||
Beneckea | R | + | + | + | + | + | + | F |
Vibrio | ||||||||
Plesiomonas | ||||||||
Aeromonas | ||||||||
腸内細菌 | R | D | + | + | + | - | + | F |
Haemophilus | R | - | + | + | D | - | D | NT |
Eikenella | R | - | -* | + | - | + | - | - |
Campylobacter | R | + | -+1 | - | D | + | - | - |
Streptobacillus+2 | R | - | + | + | - | - | + | F |
マイコプラズマ | ||||||||
*1:Peptococcus, Peptostreptococus(あるいは Leuconostoc) *2:あるいはActinomyces odontolyticus D:その属の菌種によって反応が異なる。 d: 菌種によって反応が異なる。 F:発酵 O:酸化 W:弱反応 ・:不明 NT:テストできない <+>:芽胞非形成筋もある C:球菌 R:桿菌 ・: 不明 *: 空気中では発育せず。空気CO2で発育。+1: 好気的または嫌気的には発育せず。5-6%O2中で発育。+2: あるいはShigella dysenteriae 1 |
==禁忌
エンテロバクター属 Enterobacter エシェリキア属 Escherichia クレブシエラ属 Klebsiella プロテウス属 Proteus サルモネラ属 Salmonella セラチア属 Serratia シゲラ属 Shigella エルシニア属 Yersinia
属 | 菌種 | 日和見 感染菌 |
感染症 |
Citrobacter | Citrobacter freundii | 尿路感染、骨髄炎、下痢 | |
Edwardsiella | Edwardsiella tarda | ○ | 腸管外感染症 |
Enterobacter | Enterobacter aerogenes | ○ | 肺炎、尿路感染 |
Enterobacter cloacae | |||
Enterobacter gergoviae | |||
Enterobacter sakazakii | 新生児敗血症、髄膜炎 | ||
Escherichia | Escherichia coli | 下痢、腸炎、腸管外感染症(尿路感染症、骨髄炎) | |
Hafnia | Hafnia alvei | 腸管外感染症 | |
Klebsiella | Klebsiella oxytoca | 下痢 | |
Klebsiella pneumoniae | ○ | 肺炎、尿路感染 | |
Kluyvera | Kluyvera ascorbata | ○ | |
Kluyvera cryocrescens | |||
Morganella | Morganella morganii | 尿路感染症 | |
Proteus | Proteus mirabilis | ○ | 尿路感染症 |
Proteus vulgaris | |||
Providencia | Providencia alcalifaciens | 尿路感染症、下痢 | |
Providencia rettgeri | 尿路感染症、下痢 | ||
Providencia stuartii | 尿路感染症 | ||
Salmonella | Salmonella enterica | 腸チフス、急性胃腸炎(食中毒) | |
Serratia | Serratia liquefaciens | ○ | |
Serratia marcescens | |||
Shigella | Shigella boydii | 細菌性赤痢 | |
Shigella dysenteriae | |||
Shigella flexneri | |||
Shigella sonnei | |||
Yersinia | Yersinia enterocolitica | 急性胃腸炎(食中毒)、回腸末端炎、結節性紅斑 | |
Yersinia pestis | ペスト | ||
Yersinia pseudotuberculosis | 腸間膜リンパ節炎、関節炎 |
.