granulocyte colony-stimulating factor granulocyte colony stimulating factor
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/05/05 01:55:24」(JST)
顆粒球コロニー刺激因子(かりゅうきゅうコロニーしげきいんし、granulocyte-colony stimulating factor)とは、サイトカインの一種で顆粒球産出の促進、好中球の機能を高める作用がある。英語の略号でG-CSFと表記することが多い。
マウスの顆粒球コロニー刺激因子は、1983年、オーストラリアのWEHI(Walter and Eliza Hall Institute forMedical Research:ウォルター・アンド・イライザ・ホール医学研究所)で初めて精製、確認され、ヒト型は1986年に日本とドイツ/アメリカ合衆国の研究グループがそれぞれクローンに成功した[1][2][3]。
遺伝子組換えヒトG-CSF製剤は、がん化学療法による好中球減少症や再生不良性貧血に伴う好中球減少症に用いられる。
フィルグラスチム(filgrastim、商品名グラン)、ナルトグラスチム(Nartograstim、商品名ノイアップ)、レノグラスチム(Lenograstim、商品名ノイトロジン)などの医薬品がある。いずれも、かなり高価なものである。
副作用としては、ショック、間質性肺炎、急性呼吸窮迫症候群、LDH上昇、Al-P上昇など。
この項目は、医学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(プロジェクト:医学/Portal:医学と医療)。 |
|
Colony stimulating factor 3 (granulocyte) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ribbon diagram showing three molecules of human G-CSF. From PDB 1rhg |
|||||||||||||
|
|||||||||||||
Identifiers | |||||||||||||
Symbols | CSF3 ; C17orf33; CSF3OS; GCSF | ||||||||||||
External IDs | OMIM: 138970 MGI: 1339751 HomoloGene: 7677 GeneCards: CSF3 Gene | ||||||||||||
|
|||||||||||||
RNA expression pattern | |||||||||||||
More reference expression data | |||||||||||||
Orthologs | |||||||||||||
Species | Human | Mouse | |||||||||||
Entrez | 1440 | 12985 | |||||||||||
Ensembl | ENSG00000108342 | ENSMUSG00000038067 | |||||||||||
UniProt | P09919 | P09920 | |||||||||||
RefSeq (mRNA) | NM_000759 | NM_009971 | |||||||||||
RefSeq (protein) | NP_000750 | NP_034101 | |||||||||||
Location (UCSC) | Chr 17: 38.17 – 38.17 Mb |
Chr 11: 98.7 – 98.7 Mb |
|||||||||||
PubMed search | [1] | [2] | |||||||||||
This box:
|
Granulocyte-colony stimulating factor (G-CSF or GCSF), also known as colony-stimulating factor 3 (CSF 3), is a glycoprotein that stimulates the bone marrow to produce granulocytes and stem cells and release them into the bloodstream. Functionally, it is a cytokine and hormone, a type of colony-stimulating factor, and is produced by a number of different tissues. The pharmaceutical analogs of naturally occurring G-CSF are called filgrastim and lenograstim.
G-CSF also stimulates the survival, proliferation, differentiation, and function of neutrophil precursors and mature neutrophils. G-CSF regulates them using Janus kinase (JAK)/signal transducer and activator of transcription (STAT) and Ras/mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signal transduction pathway.
Mouse granulocyte-colony stimulating factor (G-CSF) was first recognised and purified in Walter and Eliza Hall Institute, Australia in 1983,[1] and the human form was cloned by groups from Japan and Germany/United States in 1986.[2][3]
G-CSF is produced by endothelium, macrophages, and a number of other immune cells. The natural human glycoprotein exists in two forms, a 174- and 177-amino-acid-long protein of molecular weight 19,600 grams per mole. The more-abundant and more-active 174-amino acid form has been used in the development of pharmaceutical products by recombinant DNA (rDNA) technology.
The G-CSF-receptor is present on precursor cells in the bone marrow, and, in response to stimulation by G-CSF, initiates proliferation and differentiation into mature granulocytes. G-CSF is also a potent inducer of HSCs mobilization from the bone marrow into the bloodstream, although it has been shown that it does not directly affect the hematopoietic progenitors that are mobilized.[4]
Beside the effect on the hematopoietic system, G-CSF can also act on neuronal cells as a neurotrophic factor. Indeed, its receptor is expressed by neurons in the brain and spinal cord. The action of G-CSF in the central nervous system is to induce neurogenesis, to increase the neuroplasticity and to counteract apoptosis.[5][6] These properties are currently under investigations for the development of treatments of neurological diseases such as cerebral ischemia.
The gene for G-CSF is located on chromosome 17, locus q11.2-q12. Nagata et al. found that the GCSF gene has 4 introns, and that 2 different polypeptides are synthesized from the same gene by differential splicing of mRNA.[2]
The 2 polypeptides differ by the presence or absence of 3 amino acids. Expression studies indicate that both have authentic GCSF activity.
It is thought that stability of the G-CSF mRNA is regulated by an RNA element called the G-CSF factor stem-loop destabilising element.
G-CSF stimulates the production of granulocytes, a type of white blood cell. In oncology and hematology, a recombinant form of G-CSF is used with certain cancer patients to accelerate recovery from neutropenia after chemotherapy, allowing higher-intensity treatment regimens. Chemotherapy can cause myelosuppression and unacceptably low levels of white blood cells, making patients susceptible to infections and sepsis.It is administered to oncology patients via subcutaneous or intravenous routes.[7]
G-CSF is also used to increase the number of hematopoietic stem cells in the blood of the donor before collection by leukapheresis for use in hematopoietic stem cell transplantation. For this purpose, G-CSF appears to be safe in pregnancy during implantation as well as during the second and third trimesters.[8] Breastfeeding should be withheld for 3 days after CSF administration to allow for clearance of it from the milk.[8]
G-CSF may also be given to the receiver in hematopoietic stem cell transplantation, to compensate for conditioning regimens.
Itescu planned in 2004 to use G-CSF to treat heart degeneration by injecting it into the blood-stream, plus SDF (stromal cell-derived factor) directly to the heart.[9]
A Washington University School of Medicine study in mice has shown that G-CSF may decrease bone mineral density.[10]
Due to its neuroprotective properties, G-CSF is currently under investigation for cerebral ischemia in a clinical phase IIb [11] and several clinical pilot studies are published for other neurological disease such as amyotrophic lateral sclerosis.[12]
Sweet's syndrome is a known side effect of using this drug.[13]
It was first marketed by Amgen with the brand name Neupogen. Several bio-generic versions are now also available in markets such as Europe and Australia.
The recombinant human G-CSF synthesised in an E. coli expression system is called filgrastim. The structure of filgrastim differs slightly from the structure of the natural glycoprotein. Most published studies have used filgrastim. Filgrastim (Neupogen) and PEG-filgrastim (Neulasta) are two commercially-available forms of rhG-CSF (recombinant human G-CSF). The PEG (polyethylene glycol) form has a much longer half-life, reducing the necessity of daily injections.
Another form of recombinant human G-CSF called lenograstim is synthesised in Chinese Hamster Ovary cells (CHO cells). As this is a mammalian cell expression system, lenograstim is indistinguishable from the 174-amino acid natural human G-CSF. No clinical or therapeutic consequences of the differences between filgrastim and lenograstim have yet been identified, but there are no formal comparative studies.
G-CSF when given early after exposure to radiation may improve white blood cell counts, and is stockpiled for use in radiation incidents.[14][15]
People who have been administered colony-stimulating factors do not have a higher risk of leukemia than people who have not.[8]
|
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
国試過去問 | 「107I062」「099G056」「098A033」「105B045」「105G038」「108B007」「110B002」 |
リンク元 | 「サイトカイン」「サイトカイン受容体」「骨髄移植」「フィルグラスチム」「顆粒球コロニー刺激因子」 |
拡張検索 | 「G-CSF receptor」「G-CSF受容体」「G-CSFレセプター」 |
関連記事 | 「CS」「C」「CSF」「G」「Gd」 |
D
※国試ナビ4※ [107I061]←[国試_107]→[107I063]
AE
※国試ナビ4※ [099G055]←[国試_099]→[099G057]
AE
※国試ナビ4※ [098A032]←[国試_098]→[098A034]
B
※国試ナビ4※ [105B044]←[国試_105]→[105B046]
ACD
※国試ナビ4※ [105G037]←[国試_105]→[105G039]
C
※国試ナビ4※ [108B006]←[国試_108]→[108B008]
C
※国試ナビ4※ [110B001]←[国試_110]→[110B003]
機能 | サブグループ | サイトカイン | 標的 | 機能 |
炎症性サイトカイン | TNFファミリー | TNF-α | 白血球、上皮細胞 | 活性化 |
インターロイキン | IL-1 | 上皮細胞、リンパ球 | 活性化 | |
IL-6 | 種々の細胞 | 活性化 | ||
IL-8 | 白血球 | 炎症部位遊走 | ||
T細胞の増殖・分化 | インターロイキン | IL-2 | T細胞 | 活性化。増殖 |
IL-4 | T細胞 | 増殖 | ||
Th2細胞 | 分化誘導 | |||
IL-12 | Th1細胞 | 分化誘導 | ||
インターフェロン | IFN-γ | Th2細胞 | 分化抑制 | |
B細胞の増殖・分化 | インターロイキン | IL-2 | B細胞 | 活性化 |
IL-4 | B細胞 | 活性化、増殖、分化 | ||
IL-5 | B細胞 | 活性化、増殖 | ||
IL-6 | B細胞 | 増殖、分化 | ||
TGF-β | B細胞 | 分化(IgA分泌) | ||
アレルギー調節サイトカイン | インターロイキン | IL-3 | 肥満細胞 | 増殖、分化促進 |
IL-4 | B細胞 | IgEクラススイッチ促進 | ||
IL-5 | 好酸球 | 増殖、分化促進 | ||
IL-13 | B細胞 | IgEクラススイッチ促進 | ||
インターフェロン | IFN-γ | B細胞 | IgEクラススイッチ抑制 | |
走化性サイトカイン(ケモカイン) | CCケモカイン | MIP-1 | 好中球 | 遊走 |
MIP-2 | ||||
RANTES | 単球 | |||
CXCケモカイン | IL-8 | 好中球、リンパ球、好塩基球 | ||
SDF-1 | ||||
造血系サイトカイン | SCF | |||
インターロイキン | IL-7 | |||
erythropoietin | ||||
コロニー刺激因子 | GM-CSF | |||
G-CSF | ||||
M-CSF |
agent | clinical uses | |
aldesleukin | interleukin-2 | renal cell carcinoma, metastatic melanoma |
erythropoietin | epoetin | anemias (especially in renal failure) |
filgrastim | granulocyte colony-stimulating factor | recovery of bone marrow |
sargramostim | granulocyte-macrophage colony stimulating factor | recovery of bone marrow |
α-interferon | hepatitis B and C, Kaposi's sarcoma, leukemias, malignant melanoma | |
β-interferon | multiple sclerosis | |
γ-interferon | chronic granulomatous disease | |
oprelvekin | interleukin-11 | thrombocytopenia |
thrombopoietin | thrombocytopenia |
shared γc | IL-2, IL-4, IL-7, IL-9, IL-13, IL-15 |
shared gp130 | IL-6, G-CSF, IL-11, IL-12, LIF, OSM, CNTF |
shared gp140 | IL-3, IL-5, GM-CSF |
.