カルシウムチャネル
WordNet
- direct the flow of; "channel information towards a broad audience" (同)canalize, canalise
- a television station and its programs; "a satellite TV channel"; "surfing through the channels"; "they offer more than one hundred channels" (同)television channel, TV channel
- a passage for water (or other fluids) to flow through; "the fields were crossed with irrigation channels"; "gutters carried off the rainwater into a series of channels under the street"
- (often plural) a means of communication or access; "it must go through official channels"; "lines of communication were set up between the two firms" (同)communication channel, line
- a path over which electrical signals can pass; "a channel is typically what you rent from a telephone company" (同)transmission channel
- a deep and relatively narrow body of water (as in a river or a harbor or a strait linking two larger bodies) that allows the best passage for vessels; "the ship went aground in the channel"
- a white metallic element that burns with a brilliant light; the fifth most abundant element in the earths crust; an important component of most plants and animals (同)Ca, atomic number 20
- official routes of communication; "you have to go through channels"
PrepTutorEJDIC
- 〈C〉『水路』(川・湾・運河の船の通行ができる深い部分) / 〈U〉河床・川底 / 〈C〉『海峡』 / 〈C〉みぞ(groove),(道路の)水渠(すいきょ) / 《複数形で》(運搬・伝達の)正式の経路(手続き);(一般に)経路 / 〈C〉(テレビ・ラジオの)チャンネル / …‘に'水路を開く / …‘に'みぞを堀る / …'を'伝える,流す
- 『カルシウム』(金属元素;化学記号は『Ca』)
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2017/11/27 06:00:19」(JST)
[Wiki en表示]
A calcium channel is an ion channel which shows selective permeability to calcium ions. It is sometimes synonymous as voltage-dependent calcium channel,[1] although there are also ligand-gated calcium channels.[2]
Contents
- 1 Comparison tables
- 1.1 Voltage-gated
- 1.2 Ligand-gated
- 2 Pharmacology
- 3 References
- 4 External links
Comparison tables
The following tables explain gating, gene, location and function of different types of calcium channels, both voltage and ligand-gated.
Voltage-gated
Main article: voltage-dependent calcium channel
Type |
Voltage |
α1 subunit (gene name) |
Associated subunits |
Most often found in |
L-type calcium channel ("Long-Lasting" AKA "DHP Receptor") |
HVA (high voltage activated) |
Cav1.1 (CACNA1S)
Cav1.2 (CACNA1C) Cav1.3 (CACNA1D)
Cav1.4 (CACNA1F) |
α2δ, β, γ |
Skeletal muscle, smooth muscle, bone (osteoblasts), ventricular myocytes** (responsible for prolonged action potential in cardiac cell; also termed DHP receptors), dendrites and dendritic spines of cortical neurons |
P-type calcium channel ("Purkinje") /Q-type calcium channel |
HVA (high voltage activated) |
Cav2.1 (CACNA1A) |
α2δ, β, possibly γ |
Purkinje neurons in the cerebellum / Cerebellar granule cells |
N-type calcium channel ("Neural"/"Non-L") |
HVA (high-voltage-activated) |
Cav2.2 (CACNA1B) |
α2δ/β1, β3, β4, possibly γ |
Throughout the brain and peripheral nervous system. |
R-type calcium channel ("Residual") |
intermediate-voltage-activated |
Cav2.3 (CACNA1E) |
α2δ, β, possibly γ |
Cerebellar granule cells, other neurons |
T-type calcium channel ("Transient") |
low-voltage-activated |
Cav3.1 (CACNA1G)
Cav3.2 (CACNA1H)
Cav3.3 (CACNA1I) |
|
neurons, cells that have pacemaker activity, bone (osteocytes), thalamus (thalamus) |
Ligand-gated
- the receptor-operated calcium channels (in vasoconstriction)
Type |
Gated by |
Gene |
Location |
Function |
IP3 receptor |
IP3 |
ITPR1, ITPR2, ITPR3 |
ER/SR |
Releases calcium from ER/SR in response to IP3 by e.g. GPCRs[4] |
Ryanodine receptor |
dihydropyridine receptors in T-tubules and increased intracellular calcium (Calcium Induced Calcium Release - CICR) |
RYR1, RYR2, RYR3 |
ER/SR |
Calcium-induced calcium release in myocytes[4] |
Two-pore channel |
|
|
|
|
Cation channels of sperm |
|
|
|
|
store-operated channels |
indirectly by ER/SR depletion of calcium[4] |
ORAI1, ORAI2, ORAI3 |
plasma membrane |
|
Pharmacology
L-type calcium channel blockers are used to treat hypertension. T-type calcium channel blockers are used to treat epilepsy.
References
- ^ "calcium channel" at Dorland's Medical Dictionary
- ^ Striggow F, Ehrlich BE (August 1996). "Ligand-gated calcium channels inside and out". Current Opinion in Cell Biology. 8 (4): 490–5. doi:10.1016/S0955-0674(96)80025-1. PMID 8791458.
- ^ Walter F., PhD. Boron (2005). Medical Physiology: A Cellular And Molecular Approach. Elsevier/Saunders. ISBN 1-4160-2328-3. Page 479
- ^ a b c Rang HP (2003). Pharmacology. Edinburgh: Churchill Livingstone. p. 54. ISBN 978-0-443-07145-4.
External links
- "Voltage-Gated Ion Channels". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology.
- "TRIP Database". a manually curated database of protein-protein interactions for mammalian TRP channels.
- Calcium Channels at the US National Library of Medicine Medical Subject Headings (MeSH)
Membrane transport protein: ion channels (TC 1A)
|
Ca2+: Calcium channel
|
Ligand-gated |
- Inositol trisphosphate receptor
- Ryanodine receptor
|
Voltage-gated |
- L-type/Cavα
- N-type/Cavα2.2
- P-type/Cavα
- Q-type/Cavα2.1
- R-type/Cavα2.3
- T-type/Cavα
- α2δ-subunits
- β-subunits
- γ-subunits
- Cation channels of sperm
- Two-pore channel
|
|
|
Na+: Sodium channel
|
Constitutively active |
- Epithelial sodium channel
|
Proton-gated |
- Amiloride-sensitive cation channel
|
Voltage-gated |
- Navα
- 1.1
- 1.2
- 1.3
- 1.4
- 1.5
- 1.6
- 1.7
- 1.8
- 1.9
- 7A
- Navβ
|
|
|
K+: Potassium channel
|
Calcium-activated |
- BK channel
- SK channel
- IK channel
- KCa
- 1.1
- 2.1
- 2.2
- 2.3
- 3.1
- 4.1
- 4.2
- 5.1
|
Inward-rectifier |
|
Tandem pore domain |
- K2P
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 9
- 10
- 12
- 13
- 15
- 16
- 17
- 18
|
Voltage-gated |
- Kvα1-6
- 1.1
- 1.2
- 1.3
- 1.4
- 1.5
- 1.6
- 1.7
- 1.8
-
-
-
-
-
- Kvβ
- KCNIP
- minK/ISK
- minK/ISK-like
- MiRP
- Shaker gene
|
|
|
Miscellaneous
|
Cl−: Chloride channel |
- Calcium-activated chloride channels
- Anoctamin
- Bestrophin
- Chloride Channel Accessory
- CFTR
- CLCN
- CLIC
- CLNS
|
H+: Proton channel |
|
M+: CNG cation channel |
|
M+: TRP cation channel |
- TRPA (1)
- TRPC
- TRPM
- TRPML
- TRPN
- TRPP
- TRPV
|
H2O (+ solutes): Porin |
- Aquaporin
- Voltage-dependent anion channel
- General bacterial porin family
|
Cytoplasm: Gap junction |
- Connexin
- A
- GJA1
- GJA3
- GJA4
- GJA5
- GJA8
- GJA9
- GJA10
- B
- GJB1
- GJB2
- GJB3
- GJB4
- GJB5
- GJB6
- GJB7
- C
- D
- Innexin
|
|
|
By gating mechanism
|
Ion channel class |
- Ligand-gated
- Light-gated
- Voltage-gated
- Stretch-activated
|
|
|
see also disorders
|
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
English Journal
- CRAC channel inhibition produces greater anti-inflammatory effects than glucocorticoids in CD8 cells from COPD patients.
- Grundy S, Kaur M, Plumb J, Reynolds S, Hall S, House D, Begg M, Ray D, Singh D.Author information *University of Manchester NIHR Translational Research Facility, Manchester Academic Health Science Centre, University Hospital of South Manchester Foundation Trust, Manchester M23 9LT, U.K.AbstractThere are increased numbers of pulmonary CD8 lymphocytes in COPD (chronic obstructive pulmonary disease). CRAC (calcium release-activation calcium) channels play a central role in lymphocyte activation though the regulation of the transcription factor NFAT (nuclear factor of activated T-cells). We studied the expression of NFAT in lungs from COPD patients compared with controls, and evaluated the effects of CRAC channel inhibition compared with corticosteroids on NFAT activation and cytokine production in CD8 cells from COPD patients. The effects of the corticosteroid dexamethasone, the calcineurin inhibitor cyclosporin and the CRAC channel inhibitor Synta 66 were studied on cytokine production and NFAT activation using peripheral blood and isolated pulmonary CD8 cells. NFAT1 and CD8 co-expression in the lungs was compared in COPD patients and controls using combined immunohistochemistry and immunofluorescence. NFAT inhibition with either cyclosporin or Synta 66 resulted in significantly greater maximal inhibition of cytokines than dexamethasone in both peripheral blood and pulmonary CD8 cells [e.g. >95% inhibition of IFNγ (interferon γ) production from pulmonary CD8 cells using cyclosporin and Synta 66 compared with <50% using dexamethasone]. The absolute number of pulmonary CD8 cells co-expressing NFAT1 was significantly raised in lungs from COPD patients compared with controls, but the percentage of CD8 cells co-expressing NFAT1 was similar between COPD patients and controls (80.7% compared with 78.5% respectively, P=0.3). Inhibition of NFAT using the CRAC channel Synta 66 produces greater anti-inflammatory effects on CD8 cells from COPD patients than corticosteroids. NFAT is expressed at a high level in pulmonary CD8 cells in COPD.
- Clinical science (London, England : 1979).Clin Sci (Lond).2014 Feb;126(3):223-32. doi: 10.1042/CS20130152.
- There are increased numbers of pulmonary CD8 lymphocytes in COPD (chronic obstructive pulmonary disease). CRAC (calcium release-activation calcium) channels play a central role in lymphocyte activation though the regulation of the transcription factor NFAT (nuclear factor of activated T-cells). We s
- PMID 23905758
- BKCa and hEag1 channels regulate cell proliferation and differentiation in human bone marrow-derived mesenchymal stem cells.
- Zhang YY, Yue J, Che H, Sun HY, Tse HF, Li GR.Author information Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.AbstractHuman bone marrow-derived mesenchymal stem cells (MSCs) serve as a reservoir for the continuous renewal of various mesenchymal tissues; however, cellular physiology of ion channels is not fully understood. The present study investigated potential roles of large-conductance Ca(2+) -activated potassium (BKCa ) channels and ether-à-go-go potassium (hEag1 or Kv10.1) channels in regulating cell proliferation and differentiation in human MSCs. We found that inhibition of BKCa with paxilline or hEag1 with astemizole, or knockdown of BKCa with shRNAs targeting KCa1.1 or hEag1 channels with shRNAs targeting KCNH1 arrested the cells at G0/G1 phase. In addition, silencing BKCa or hEag1 channels significantly reduced adipogenic differentiation with decrease of lipid accumulation and expression of the adipocyte marker PPARγ, and decreased osteogenic differentiation with reduction of mineral precipitation and osteocalcin. These effects were accompanied with a reduced cyclin D1, cyclin E, p-ERK1/2, and p-Akt. Our results demonstrate that BKCa and hEag1 channels not only regulate cell proliferation, but also participate in the adipogenic and osteogenic differentiations in human MSCs, which indicates that BKCa and hEag1 channels may be essential in maintaining bone marrow physiological function and bone regeneration.
- Journal of cellular physiology.J Cell Physiol.2014 Feb;229(2):202-12. doi: 10.1002/jcp.24435.
- Human bone marrow-derived mesenchymal stem cells (MSCs) serve as a reservoir for the continuous renewal of various mesenchymal tissues; however, cellular physiology of ion channels is not fully understood. The present study investigated potential roles of large-conductance Ca(2+) -activated potassiu
- PMID 23881642
- TMEM16E (GDD1) exhibits protein instability and distinct characteristics in chloride channel/pore forming ability.
- Tran TT, Tobiume K, Hirono C, Fujimoto S, Mizuta K, Kubozono K, Inoue H, Itakura M, Sugita M, Kamata N.Author information Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.AbstractTMEM16E/GDD1 has been shown to be responsible for the bone-related late-onset disease gnathodiaphyseal dysplasia (GDD), with the dominant allele (TMEM16E(gdd) ) encoding a missense mutation at Cys356. Additionally, several recessive loss-of-function alleles of TMEM16E also cause late-onset limb girdle muscular dystrophy. In this study, we found that TMEM16E was rapidly degraded via the proteasome pathway, which was rescued by inhibition of the PI3K pathway and by the chemical chaperone, sodium butyrate. Moreover, TMEM16E(gdd) exhibited lower stability than TMEM16E, but showed similar propensity to be rescued. TMEM16E did not exhibit cell surface calcium-dependent chloride channel (CaCC) activity, which was originally identified in TMEM16A and TMEM16B, due to their intracellular vesicle distribution. A putative pore-forming domain of TMEM16E, which shared 39.8% similarity in 98 amino acids with TMEM16A, disrupted CaCC activity of TMEM16A via domain swapping. However, the Thr611Cys mutation in the swapped domain, which mimicked conserved cysteine residues between TMEM16A and TMEM16B, reconstituted CaCC activity. In addition, the GDD-causing cysteine mutation made in TMEM16A drastically altered CaCC activity. Based on these findings, TMEM16E possesses distinct function other than CaCC and another protein-stabilizing machinery toward the TMEM16E and TMEM16E(gdd) proteins should be considered for the on-set regulation of their phenotypes in tissues.
- Journal of cellular physiology.J Cell Physiol.2014 Feb;229(2):181-90. doi: 10.1002/jcp.24431.
- TMEM16E/GDD1 has been shown to be responsible for the bone-related late-onset disease gnathodiaphyseal dysplasia (GDD), with the dominant allele (TMEM16E(gdd) ) encoding a missense mutation at Cys356. Additionally, several recessive loss-of-function alleles of TMEM16E also cause late-onset limb gird
- PMID 23843187
Related Links
- n an element/mineral that is essential for bone development and maintenance, nerve impulse conduction, and general cellular function. Calcium supplementation is useful for preventing osteoporosis and perhaps colon cancer. It is also ...
- The family of voltage-gated calcium channels serve as the key transducers of cell surface membrane potential changes into local intracellular calcium transients ... N-type, P/Q-type, and R-type calcium currents also require strong ...
★リンクテーブル★
[★]
- 英
- calcium
- 関
- カルシウムイオン、リン
- calcium channel blockers, calcium channels
基準値
- 血清総Ca 8.6-10.1 mg/dl(臨床検査法提要第32版)
- 8.6-10.2 mg/dL (QB) だいたい 9.4 ± 0.8
- 血清Caイオン 1.15-1.30 mmmol/l(臨床検査法提要第32版), 4.6-5.1 mg/dl
血液ガス
- 血液ガスでは (mEq/l)で出されるが 4倍すれば (mg/dl)に変換できる 原子量が約40ゆえ
溶解度積
リン酸カルシウム
|
366x10-6
|
(30℃)
|
リン酸カルシウム
|
0.35x10-6
|
(38℃)
|
炭酸カルシウム
|
0.0087x10-6
|
(25℃)
|
酒石酸カルシウム
|
0.0077x10-6
|
(25℃)
|
シュウ酸カルシウム
|
0.00257x10-6
|
(25℃)
|
オレイン酸カルシウム
|
0.000291x10-6
|
(25℃)
|
パルチミン酸カルシウム
|
0.000000161x10-6
|
(23℃)
|
カルシウムの吸収(SP.744)
- +健康成人の1日あたりの食物Ca摂取0.6g
- +消化管分泌物と脱落上皮細胞のCa 0.6g
- -吸収されるCa 0.7g
- -そのまま排泄 0.5g
- 正味吸収されるCa 0.1g
カルシウムの吸収部位
カルシウム代謝の調節機構
副甲状腺ホルモン
- 1. 破骨細胞に作用してCa,Pが血中へ。
- 2. 腎の遠位尿細管に作用してCa再吸収の亢進、近位尿細管でのP再吸収の抑制。
- 3. 近位尿細管に作用して酵素を活性化し、1,25水酸化ビタミンD3の産生亢進。
1,25(OH)2D3
- 1. 空腸からのCaとPの吸収。
- 2. 骨形成促進。
- 3. 遠位尿細管でのCaとPの再吸収促進。
- 4. 副甲状腺ホルモンの合成を抑制
尿細管における部位別カルシウム輸送
- 糸球体で濾過されるのはイオン化Caと陰イオン複合型Ca(蛋白結合型Caは濾過されない)
- 濾過されたカルシウムのうち95%が再吸収される。
- 近位尿細管:60-70%
- ヘンレループ:20-25%
- 遠位尿細管、集合管:10-15%
近位尿細管
- Na+依存的に再吸収。受動輸送80%、能動輸送20%
- 基底側のCa2+ ATPase, 3Na+-Ca2+逆輸送系
ヘンレループ
- 太いヘンレループ上行脚で
- 受動輸送:管腔内電位が正であるため
遠位尿細管~集合管
- 糸球体濾過量の10-15%が再吸収されている → 量としては少ないが能動的に吸収が行われる部位。
- 能動輸送:管腔内電位が負であるため。
- PTH、カルシトニンに調節されている
- チアジド系利尿薬により細胞内Na↓となるとCa再吸収↑となる!!!! ← ループ利尿薬と違う点。よって高カルシウム血症が起こることがある。
接合尿細管
- 管腔側:Ca2+チャネル/非選択的カチオンチャネル
- 基底側:Na+-K+ ATPase, 3Na+-Ca2+交換系
尿細管におけるカルシウムの輸送の調節 SP.796
- Ca2+の尿中排泄量はNa+の尿中排泄量と比例。循環血漿量が増加するとCa2+排泄も増加
- Ca2+の尿中排泄量は血漿Ca2+濃度と比例する。
血清カルシウム濃度
- 血液中でCa2+は調節を受けて一定に保たれるが、蛋白と結合しているCaはアルブミンの量によって増減する。
- 血清アルブミン濃度 4 g/dl、血清Ca濃度 9mg/dl。補正Ca濃度 9mg/dl → 正常
- 血清アルブミン濃度 2 g/dl、血清Ca濃度 7mg/dl。 → 大変!!低カルシウム血症!! → ホント? ってことになる。アルブミンの量が減ってAlb-Caが減っただけで生理的に重要なCa2+は保たれているのではないか。 → こんな時に補正Ca濃度を用いるのである
- →補正Ca濃度 9mg/dl → 正常
- つまり、低アルブミン血症ではCa2+は保たれているにもかかわらず、血清Caは低値となりそのままでは評価できないために補正を行う。
- 補正Ca濃度(mg/dl)=Ca実測値(mg/dl)+(4-血清アルブミン濃度(g/dl)) ・・・Payneの式
- アルブミンのpIは7より小さく、アシデミアでは負に帯電しているアルブミンが減少、アルカレミアでは負に帯電しているアルブミンが増加する。すなわち、pHが下がるとアルブミンとくっつなくなったCaが増加するので、血液pH0.1の低下につきfreeイオン化Ca(Ca2+)は0.12mg/dl増加する???????????
循環血液量
血清Ca濃度
- 血清Ca濃度↑→PTH↓
- 生理活性のあるのはイオン化Ca(Ca2+)のみ
- 血清Ca濃度=イオン化Ca(45%) + 蛋白結合型Ca(40%) + 陰イオン複合型Ca(15%)
- イオン化Caは一定に保たれる
pH
- アシドーシス :pHが小さくなると負電荷減少:蛋白のCa結合能↓、イオン化Ca↑
- アルカローシス:pHが大きくなると負電荷増加:蛋白Caの結合能↑、イオン化Ca↓→Ca欠乏(低カルシウム血症)
低蛋白血症
- 低蛋白血症の際、蛋白結合型Caは減少するが、イオン化Ca一定。
尿中カルシウム
血中カルシウムと尿中カルシウム
- 薬剤などの影響がなければ、血中カルシウムと尿中カルシウムは相関がありそうである → 副甲状腺ホルモン
血清カルシウムと心電図
元素
- 金属元素。周期表第2族アルカリ土類金属元素
- 原子番号:20
- 元素記号:Ca
- 原子量 40.078 g/mol
臨床関連
参考
- http://www.orth.or.jp/osteoporose/caseizai.html
[★]
- 川床、川底。水路、河道
- 海峡
- 水管、導管
- 溝
- 経路、ルート。道筋、方向
- 関
- ion channel、ionic channel
[★]