出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2017/04/06 23:37:05」(JST)
この記事の正確性に疑問が呈されています。問題箇所に信頼できる情報源を示して、記事の改善にご協力ください。議論はノートを参照してください。(2010年5月) |
リポタンパク質(リポたんぱくしつ、英語: Lipoprotein)は、脂質が血漿中に存在する様態で、脂質とアポタンパク質が結合したものである[1]。
脂肪酸のような分極した分子を除き(遊離脂肪酸)、脂質を血漿中に安定に存在させるには、タンパク質(アポタンパク質と呼ぶ)と結合させる必要がある。リポタンパク質は、トリアシルグリセロール(トリグリセリド、中性脂肪)および、細胞の生命維持に不可欠なコレステロールを多く含む球状粒子である。カイロミクロン(キロミクロン)、超低密度リポタンパク質(英語版) (VLDL)、中間密度リポタンパク質(英語版) (IDL)、低密度リポタンパク質(英語版) (LDL) 、高密度リポタンパク質(英語版) (HDL) の各種類があり、比重が大きいほどアポリポタンパク質の割合が高く、逆に脂質の割合が低い。
リポタンパク質は、電気泳動法または超遠心にて分類される。通常見られるリポタンパク質は次のようなものである。
3者の違いは、アガロース法はリポタンパク質を荷電で分析し、ポリアクリルアミドゲルディスク法では、主にリポタンパク質の粒子サイズの順に分析され、超遠心法はリポタンパク質の粒子の密度(体積あたりの重量)で分析される。 3者の間にはおよそ次の対応関係があるが正確ではない。
カイロミクロンを構成するアポタンパク質はアポB48で外因性リポタンパク質と呼ばれ、VLDL、LDL、HDLを構成するアポタンパク質はアポB100で、内因性リポタンパク質と呼ばれる。 VLDLがトリグリセリドを失い小型化したリポタンパク質を、IDLと称する。またLDL粒子がトリグリセリドを失い小型化したリポタンパク質を、small dense LDLと言い、ともに動脈硬化の原因物質といわれている。 ディスク電気泳動法では、IDLはミッドバンドと呼ばれている。
0.94 g/mL 未満のリポタンパク質で、直径は 180 - 500 nm 程度[2]。
カイロミクロン中には約1:10の割合でコレステロールとトリアシルグリセロールが含まれる。腸管から吸収された脂質が腸管粘膜でリポタンパク質に再構成されリンパ管を通り中枢である肝臓に運ばれる。その役割を果たすのがカイロミクロンである。構成するアポリポタンパク質としてApoB48などがある。
リポタンパク質リパーゼ欠損症(英語版)では著しい高カイロミクロン血症をしめす。一方で、リポタンパク質を合成するのに必要なMTP(ミクロソームトリグリセリド輸送タンパク)を欠損する場合無βリポタンパク血症になり、脂溶性ビタミンが運ばれなくなるのでビタミンAやビタミンEの欠乏症に似た夜盲症や末梢神経麻痺などの症状をきたす。
1.006 g/mL 未満のリポタンパク質[2]。
肝臓で生成されて血中に放出される。約1:5の割合でコレステロールとトリアシルグリセロールが含まれ、末梢組織にトリアシルグリセロールを供給する。構成するアポリポタンパク質としてアポリポプロテインB-100(apo B-100)、アポリポプロテインC-II(apo C-II)、アポリポプロテインE(apo E)がある。
ApoB短縮症ではVLDLやLDLに乏しい低βリポ蛋白血症をきたす。
1.006 - 1.019 g/mL のリポタンパク質[2]。
リパーゼの一種であるリポタンパク質リパーゼ(英語版)(LPL)によりVLDLやカイロミクロンが加水分解されトリアシルグリセロールを失う過程のリポタンパク質。レムナント(英語でremnant。remainと同系の単語)とも称される。
通常は速やかに代謝されるが、インスリン抵抗性を背景としたメタボリックシンドロームの患者ではLPL活性が低下しており、apo E変異症のIII型高脂血症の患者ではLDL受容体、VLDL受容体、LRP受容体への結合が進まず、レムナントが血中に鬱滞する。
PAG法電気泳動ではmidbandとして定性的・半定量的に測定可能である。また、抗ApoAI抗体と抗ApoB100抗体を使ったRLP-C測定キットでレムナントの多寡が定量的に評価できる。最近ではapo B48定量による評価も検討されている。
1.019 - 1.063 g/mL のリポタンパク質で、直径は 22 nm 程度[2]。
リポタンパク質の中でコレステロール含有量が最も多く、末梢組織にコレステロールを供給する。そのため、悪玉コレステロールとも呼ばれる。apo B-100やapo Eを認識するLDL受容体を介して主に肝臓に取り込まれ異化される。
LDL受容体欠損症は家族性高コレステロール血症(FH:familial hypercholesterolemia)とよばれ、特にホモ欠損症では総コレステロール値が600mg以上にもなり思春期にも虚血性心疾患など重篤な動脈硬化症に至る。
LDLが酸化・変性・糖化することによってLDL受容体への親和性を失う(酸化LDL)。その場合、スカベンジャー受容体などを経てマクロファージに取り込まれ、マクロファージの機能を変化させることにより動脈硬化症を発症すると考えられている。
最近ではスモールデンス(sd-LDL)と呼ばれるLDL受容体への親和性を失い、小粒子ゆえに血管壁に浸透しやすい種類のLDLが虚血性心疾患に関与していることもわかってきた。粒子径は25.5nm以下である。比重で分画した場合1.040 - 1.063のLDLに相当する。
1.063 - 1.21 g/mL のリポタンパク質[2]。
血管内皮など末梢組織に蓄積したコレステロールを肝臓に運ぶ働きがある。結果として動脈硬化を抑える働きをするので、善玉コレステロールと呼ばれることもある。構成するアポリポタンパク質としてアポリポプロテインA-I(apo A-I)やアポリポプロテインA-II(apo A-II)などがある。
LDLやVLDLとの間でHDLのトリアシルグリセロールとLDLやVLDLのコレステロールをコレステリルエステル転送タンパク質(英語版)(CETP)を用いて交換し、コレステロールはLDL受容体を介し肝臓に逆転送しやすくしている。
Low-density lipoprotein (LDL) is one of the five major groups of lipoprotein. These groups, from least dense (largest particles) to most dense (smallest particles), are chylomicrons, very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein and high-density lipoprotein (HDL).
Lipoproteins transfer lipids (fats) around the body in the extracellular fluid thereby facilitating fats to be available and taken up by the cells body wide via receptor-mediated endocytosis.[1][2] Lipoproteins are complex particles composed of multiple proteins, typically 80-100 proteins/particle (organized by a single apolipoprotein B for LDL and the larger particles). A single LDL particle is about 220-275 angstroms in diameter[3] typically transporting 3,000 to 6,000 fat molecules/particle, varying in size according to the number and mix of fat molecules contained within. The lipids carried include all fat molecules with cholesterol, phospholipids, and triglycerides dominant; amounts of each varying considerably. Lipoproteins can be sampled from blood for evaluation of atherosclerosis driving factors.
LDL particles pose a risk for cardiovascular disease when they invade the endothelium and become oxidized, since the oxidized forms are more easily retained by the proteoglycans. A complex set of biochemical reactions regulates the oxidation of LDL particles, chiefly stimulated by presence of necrotic cell debris and free radicals in the endothelium.[4] Increasing concentrations of LDL particles are strongly associated with increasing rates of accumulation of atherosclerosis within the walls of arteries over time, eventually resulting in sudden plaque ruptures, decades later, and triggering clots within the artery opening; these debris & clots narrowing or closing off the opening locally (more commonly microscopic branches distal to plaque rupture locations), i.e. cardiovascular disease, stroke, and other vascular disease complications.[5]
LDL particles (though far different from cholesterol per se) are sometimes referred to as bad cholesterol because they can transport their content of lipid molecules into artery walls, attract macrophages, and thus drive atherosclerosis. In contrast, HDL particles (though far different from cholesterol per se) are often called good cholesterol or healthy cholesterol because they can remove lipid molecules from macrophages in the wall of arteries.[6]
A hereditary form of high LDL is familial hypercholesterolemia (FH). High LDL is termed hyperlipoproteinemia type II (after the dated Fredrickson classification).
Each native LDL particle enables emulsification, i.e. surrounding/packaging all fatty acids being carried, enabling these fats to move around the body within the water outside cells. Each particle contains a single apolipoprotein B-100 molecule (Apo B-100, a protein that has 4536 amino acid residues and a mass of 514 kDa), along with 80 to 100 additional ancillary proteins. Each LDL has a highly hydrophobic core consisting of polyunsaturated fatty acid known as linoleate and hundreds to thousands (about 1500 commonly cited as an average) esterified and unesterified cholesterol molecules. This core also carries varying numbers of triglycerides and other fats and is surrounded by a shell of phospholipids and unesterified cholesterol, as well as the single copy of Apo B-100. LDL particles are approximately 22 nm (0.00000087 in.) to 27.5 nm in diameter and have a mass of about 3 million daltons.[7] Since LDL particles contain a variable and changing number of fatty acid molecules, there is a distribution of LDL particle mass and size.[3] Determining the structure of LDL has been a tough task because of its heterogeneous structure. The structure of LDL at human body temperature in native condition, with a resolution of about 16 Angstroms using cryo-electron microscopy, has been recently described.[8]
This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2010) (Learn how and when to remove this template message) |
LDL particles are formed as VLDL lipoproteins lose triglyceride through the action of lipoprotein lipase (LPL) and they become smaller and denser (i.e. fewer fat molecules with same protein transport shell), containing a higher proportion of cholesterol esters.[4]
When a cell requires additional cholesterol (beyond its current internal HMGCoA production pathway), it synthesizes the necessary LDL receptors as well as PCSK9, a proprotein convertase that marks the LDL receptor for degradation.[9] LDL receptors are inserted into the plasma membrane and diffuse freely until they associate with clathrin-coated pits. When LDL receptors bind LDL particles in the bloodstream, the clathrin-coated pits are endocytosed into the cell.
Vesicles containing LDL receptors bound to LDL are delivered to the endosome. In the presence of low pH, such as that found in the endosome, LDL receptors undergo a conformation change, releasing LDL. LDL is then shipped to the lysosome, where cholesterol esters in the LDL are hydrolysed. LDL receptors are typically returned to the plasma membrane, where they repeat this cycle. If LDL receptors bind to PCSK9, however, transport of LDL receptors is redirected to the lysosome, where they are degraded.
LDL interfere with the quorum sensing system that upregulates genes required for invasive Staphylococcus aureus infection. The mechanism of antagonism entails binding Apolipoprotein B to a S. aureus autoinducer pheromone, preventing signaling through its receptor. Mice deficient in apolipoprotein B are more susceptible to invasive bacterial infection.[10]
LDL particles vary in size and density, and studies have shown that a pattern that has more small dense LDL particles, called Pattern B, equates to a higher risk factor for coronary heart disease (CHD) than does a pattern with more of the larger and less-dense LDL particles (Pattern A). This is thought to be because the smaller particles are more easily able to penetrate the endothelium. Pattern I, for intermediate, indicates that most LDL particles are very close in size to the normal gaps in the endothelium (26 nm). According to one study, sizes 19.0–20.5 nm were designated as pattern B and LDL sizes 20.6–22 nm were designated as pattern A.[11]
Some in the medical community have suggested the correspondence between Pattern B and CHD is stronger than the correspondence between the LDL number measured in the standard lipid profile test. Tests to measure these LDL subtype patterns have been more expensive and not widely available, so the common lipid profile test is used more often.
There has also been noted a correspondence between higher triglyceride levels and higher levels of smaller, denser LDL particles and alternately lower triglyceride levels and higher levels of the larger, less dense (a.k.a. "buoyant") LDL.[12][13]
With continued research, decreasing cost, greater availability and wider acceptance of other lipoprotein subclass analysis assay methods, including NMR spectroscopy,[14] research studies have continued to show a stronger correlation between human clinically obvious cardiovascular events and quantitatively measured particle concentrations.[citation needed]
Blood tests commonly report LDL-C: the amount of cholesterol which is estimated to be contained with LDL particles, on average, using a formula, the Friedewald equation. In clinical context, mathematically calculated estimates of LDL-C are commonly used as an estimate of how much low density lipoproteins are driving progression of atherosclerosis. The problem with this approach is that LDL-C values are commonly discordant with both direct measurements of LDL-particles and actual rates of atherosclerosis progression.
Direct LDL measurements are also available and better reveal individual issues but are less often promoted or done due to slightly higher costs and being available from only a couple of laboratories in the United States. In 2008, the ADA and ACC recognized direct LDL particle measurement by NMR as superior for assessing individual risk of cardiovascular events.[15]
Chemical measures of lipid concentration have long been the most-used clinical measurement, not because they have the best correlation with individual outcome, but because these lab methods are less expensive and more widely available.
The lipid profile does not measure LDL particles. It only estimates them using the Friedewald equation[13][16] by subtracting the amount of cholesterol associated with other particles, such as HDL and VLDL, assuming a prolonged fasting state, etc.:
There are limitations to this method, most notably that samples must be obtained after a 12 to 14 h fast and that LDL-C cannot be calculated if plasma triglyceride is >4.52 mmol/L (400 mg/dL). Even at triglyceride levels 2.5 to 4.5 mmol/L, this formula is considered inaccurate.[17] If both total cholesterol and triglyceride levels are elevated then a modified formula, with quantities in mg/dl, may be used
This formula provides an approximation with fair accuracy for most people, assuming the blood was drawn after fasting for about 14 hours or longer, but does not reveal the actual LDL particle concentration because the percentage of fat molecules within the LDL particles which are cholesterol varies, as much as 8:1 variation.
However, the concentration of LDL particles, and to a lesser extent their size, has a stronger and consistent correlation with individual clinical outcome than the amount of cholesterol within LDL particles, even if the LDL-C estimation is approximately correct. There is increasing evidence and recognition of the value of more targeted and accurate measurements of LDL particles. Specifically, LDL particle number (concentration), and to a lesser extent size, have shown slightly stronger correlations with atherosclerotic progression and cardiovascular events than obtained using chemical measures of the amount of cholesterol carried by the LDL particles.[18] It is possible that the LDL cholesterol concentration can be low, yet LDL particle number high and cardiovascular events rates are high. Correspondingly, it is possible that LDL cholesterol concentration can be relatively high, yet LDL particle number low and cardiovascular events are also low. If LDL particle concentration is used to predict cardiovascular events, many other correlates of these clinical outcomes, such as diabetes mellitus, obesity and smoking, lose most of their predictive accuracy.
In the USA, the American Heart Association, NIH, and NCEP provide a set of guidelines for fasting LDL-Cholesterol levels, estimated or measured, and risk for heart disease. As of about 2005, these guidelines were:[19][20][21]
Level mg/dL | Level mmol/L | Interpretation |
---|---|---|
25 to <50 | <1.3 | Optimal LDL cholesterol, levels in healthy young children before onset of atherosclerotic plaque in heart artery walls |
<70 | <1.8 | Optimal LDL cholesterol, corresponding to lower rates of progression, promoted as a target option for those known to clearly have advanced symptomatic cardiovascular disease |
<100 | <2.6 | Optimal LDL cholesterol, corresponding to lower, but not zero, rates for symptomatic cardiovascular disease events |
100 to 129 | 2.6 to 3.3 | Near optimal LDL level, corresponding to higher rates for developing symptomatic cardiovascular disease events |
130 to 159 | 3.3 to 4.1 | Borderline high LDL level, corresponding to even higher rates for developing symptomatic cardiovascular disease events |
160 to 199 | 4.1 to 4.9 | High LDL level, corresponding to much higher rates for developing symptomatic cardiovascular disease events |
>200 | >4.9 | Very high LDL level, corresponding to highest increased rates of symptomatic cardiovascular disease events |
Over time, with more clinical research, these recommended levels keep being reduced because LDL reduction, including to abnormally low levels, was the most effective strategy for reducing cardiovascular death rates in one large double blind, randomized clinical trial of men with hypercholesterolemia;[22] far more effective than coronary angioplasty/stenting or bypass surgery[23]
For instance, for people with known atherosclerosis diseases, the 2004 updated American Heart Association, NIH and NCEP recommendations are for LDL levels to be lowered to less than 70 mg/dL, unspecified how much lower. This low level of less than 70 mg/dL (higher than Tim Russert's value shortly prior to his heart attack) was recommended for primary prevention of 'very-high risk patients' and in secondary prevention as a 'reasonable further reduction'. Lack of evidence for such a recommendation is discussed in an article in the Annals of internal medicine.[24] It should also be noted that statin drugs involved in such clinical trials have numerous physiological effects beyond simply the reduction of LDL levels.
It has been estimated from the results of multiple human pharmacologic LDL lowering trials[25] that LDL should be lowered to below 30 to reduce cardiovascular event rates to near zero. For reference, from longitudinal population studies following progression of atherosclerosis-related behaviors from early childhood into adulthood,[26] it has been discovered that the usual LDL in childhood, before the development of fatty streaks, is about 35 mg/dL. However, all the above values refer to chemical measures of lipid/cholesterol concentration within LDL, not measured low-density lipoprotein concentrations, the accurate approach.
The feasibility of these figures has been questioned by sceptics, claiming that many members of the AHA and NIH are heavily associated with pharmaceutical companies giving them bias towards lowering cholesterol levels and such guidelines giving rise to increased use of cholesterol lowering medicine such as statins.[citation needed]
A study was conducted measuring the effects of guideline changes on LDL cholesterol reporting and control for diabetes visits in the US from 1995 to 2004. It was found that although LDL cholesterol reporting and control for diabetes and coronary heart disease visits improved continuously between 1995 and 2004, neither the 1998 ADA guidelines nor the 2001 ATP III guidelines increased LDL cholesterol control for diabetes relative to coronary heart disease.[27]
Moreover, there are publications regarding the risks of low-LDL cholesterol too.[28]
There are several competing methods for measurement of lipoprotein particle concentrations and size. The evidence is that the NMR methodology (developed, automated & greatly reduced in costs while improving accuracy as pioneered by Jim Otvos and associates) results in a 22-25% reduction in cardiovascular events within one year,[29] contrary to the longstanding claims by many in the medical industry that the superiority over existing methods was weak, even by statements of some proponents.[30]
Since the later 1990s, because of the development of NMR measurements, it has been possible to clinically measure lipoprotein particles at lower cost [under $80 US (including shipping) & is decreasing; versus the previous costs of >$400 to >$5,000] and higher accuracy. There are two other assays for LDL-particles, however, like LDL-C, most only estimate LDL particle concentrations.
Direct LDL particle measurement by NMR was mentioned by the ADA and ACC, in a 28 March 2008 joint consensus statement,[31] as having advantages for predicting individual risk of atherosclerosis disease events, but the statement noted that the test is less widely available, is more expensive [about $13.00 US (2015 without insurance coverage) from some labs which use the Vantera Analyzer[32]]. Debate continues that it is "...unclear whether LDL particle size measurements add value to measurement of LDL-particle concentration", though outcomes have always tracked LDL-particle, not LDL-C, concentrations.
Using NMR, as pioneered by researcher Jim Otvos and the North Carolina State University academic research spin-off company LipoScience, the total LDL particle concentrations, in nmol/L plasma, are typically subdivided by percentiles referenced to the 5,382 men and women, not on any lipid medications, who are participating in the MESA trial.[33]
The LDL particle concentrations are typically categorized by percentiles, <20%, 20–50%, 50th–80th%, 80th–95% and >95% groups of the people participating and being tracked in the MESA trial, a medical research study sponsored by the United States National Heart, Lung, and Blood Institute.
MESA Percentile | LDL particles nmol/L | Interpretation |
---|---|---|
0–20% | <1,000 | Those with lowest rate of cardiovascular disease events & low (optimal) LDL particle concentration |
20–50% | 1,000–1,299 | Those with moderate rate of cardiovascular disease events & moderate LDL particle concentration |
50–80% | 1,300–1,599 | Those with Borderline-High rate of cardiovascular disease events & higher LDL particle concentration |
89–95% | 1,600–2,000 | Those with High rate of cardiovascular disease events and even higher LDL particle concentration |
>95% | >2,000 | Those with very high rate of cardiovascular disease events and highest LDL particle concentration |
The lowest incidence of atherosclerotic events over time occurs within the <20% group, with increased rates for the higher groups. Multiple other measures, including particle sizes, small LDL particle concentrations, large total and HDL particle concentrations, along with estimations of insulin resistance pattern and standard cholesterol lipid measurements (for comparison of the plasma data with the estimation methods discussed above) are also routinely provided.
Markers indicating a need for LDL-C Reduction
(Per 2004 United States Government Minimum Guidelines[34][35]) |
||||
---|---|---|---|---|
If the patient's cardiac risk is... | then the patient should consider LDL-C reduction if the count in mg/dL is over... | and LDL-C reduction is indicated if the count in mg/dL is over... | ||
High, meaning a 20% or greater risk of heart attack within 10 years, or an extreme risk factor | 70[36] | 100[36] | ||
moderately high, meaning a 10-20% risk of heart attack within 10 years and more than 2 heart attack risk factors | 100[36] | 130[36] | ||
moderate, meaning a 10% risk of heart attack within 10 years and more than 2 heart attack risk factors | 130[36] | 160[36] | ||
low, meaning less than 10% risk of heart attack within 10 years and 1 or 0 heart attack risk factors | 160[36] | 190[36] |
The mevalonate pathway serves as the basis for the biosynthesis of many molecules, including cholesterol. The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase) is an essential component and performs the first of 37 steps within the cholesterol production pathway, and present in every animal cell.
Keep in mind that LDL-C is not a measurement of actual LDL particles; LDL-C is only an estimate (not measured from the individual's blood sample) of how much cholesterol is being transported by all LDL particles; either a smaller concentration of large particles or a high concentration of small particles. Also keep in mind that LDL particles carry many fat molecules (typically 3,000 to 6,000 fat molecules per LDL particle); this includes cholesterol, triglycerides, phospholipids and others. Thus even if the hundreds to thousands of cholesterol molecules within an average LDL particle were measured, this does not reflect the other fat molecules or even the number of LDL particles.
Because LDL particles appear harmless until they are within the blood vessel walls and oxidized by free radicals,[47] it has been postulated that ingesting antioxidants and minimizing free radical exposure may reduce LDL's contribution to atherosclerosis, though results are not conclusive.[48][49]
Lipids: lipoprotein particle metabolism
|
|
---|---|
Lipoprotein particle classes and subclasses |
|
Apolipoproteins |
|
Extracellular enzymes |
|
Lipid transfer proteins |
|
Cell surface receptors |
|
ATP-binding cassette transporter |
|
Cardiovascular disease (vessels) (I70–I99, 440–456)
|
|||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Arteries, arterioles and capillaries |
|
||||||||||||||||||||||||||||
Veins |
|
||||||||||||||||||||||||||||
Arteries or veins |
|
||||||||||||||||||||||||||||
Blood pressure |
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
国試過去問 | 「111E017」 |
リンク元 | 「脂質異常症」「ネフローゼ症候群」「コレステロール」「蛋白分画」「コレステロールエステル転送蛋白」 |
拡張検索 | 「VLDL」「LDL受容体関連蛋白」「LDLレセプター関連タンパク質」「LDLリポ蛋白」 |
関連記事 | 「LD」「L」 |
E
※国試ナビ4※ [111E016]←[国試_111]→[111E018]
型分類 | 増加するリポ蛋白 | 血清脂質の変動 | コレステロール (mg/dl) |
トリグリセリド (mg/dl) | ||
正常 | - | - | <220 | <150 | ||
I型高脂血症 | 高カイロミクロン血症 | hyperchylomicronemia | カイロミクロン | 中性脂肪著明増加 | <260 | >1000 |
IIa型高脂血症 | 高コレステロール血症 | hypercholesterolemia | LDL | コレステロール増加 | >220 | >150 |
IIb型高脂血症 | 複合型高脂血症 | combined hyperlipidemia | LDL, VLDL | コレステロールと中性脂肪増加 | >220 | 150-300 |
III型高脂血症 | 異常βリポ蛋白血症 | dysbetalipoproteinemia | IDL | 電気泳動でbroad β | 350-500 | 350-500 |
IV型高脂血症 | 高トリグリセリド血症 | hypertriglyceridemia | VLDL | 中性脂肪増加 | <240 | 200-1000 |
V型高脂血症 | 複合型高トリグリセリド血症 | mixed hypertriglyceridemia | カイロミクロン, VLDL | 中性脂肪著明増加 | <300 | >1000 |
I型 | II型 | III型 | IV型 | V型 | |||
IIa型 | IIb型 | ||||||
高カイロミクロン血症 | 高コレステロール血症 | 複合型高脂血症 | 異常βリポ蛋白血症 | 高トリグリセリド血症 | 複合型高トリグリセリド血症 | ||
増加リポ蛋白 | CM | ++ | + | ||||
VLDL | + | + | + | ||||
IDL | + | ||||||
LDL | + | + | |||||
血漿脂質 | TC | + | +++ | ++ | ++ | /+ | + |
TG | +++ | ++ | ++ | ++ | +++ | ||
TC/TG | <0.2 | >1.6 | 不定 | ≒ | 0.6-1.6 | <0.6 | |
病因 | ・LPL欠損 ・アポCII欠損 (外因性高脂血症) |
LDL受容体異常 | 不明 | アポE異常 (E2/E2など) |
不明 (内因性高脂血症) |
LPL欠損へテロ(一部) (外因性高脂血症 and (内因性混合型高脂血症) | |
臨床所見 | 発症時期 | 小児期 | 小児期~成人 | 成人 | 成人 | 小児期~成人 | |
肝脾肥大 |
+++ | - | + | +++ 脾のみ |
+++ | ||
腹痛 | + | + | + | ||||
膵炎 | + | + | |||||
網膜脂血症 | + | + | |||||
肥満 | + | + | |||||
角膜輪 | + | + | |||||
冠動脈疾患 | まれ | 最も高率 | 高率 | 中程度 | 比較的まれ | ||
黄色腫 | 発疹状 | 黄色板状 結節状 腱黄色腫 |
手掌線 結節状 発疹状 |
発疹状 | |||
耐糖能 | 正常 | 正常 | 正常 | 異常多い | 異常多い | ||
高尿酸血症 | なし | なし | 少ない | 多い | 多い | ||
遺伝 | 劣性遺伝 | 優性遺伝 | 劣性遺伝 | 優性遺伝 | 不明 | ||
頻度 | まれ | 多い 500人中 1人(ヘテロ) 100万人中 1人(ホモ) |
多い 200人中 1人 |
少ない 1万人中 2-3人 |
最も多い | まれ | |
血清静置試験 | 上層:乳濁 | 透明 | わずかに混濁 | 混濁、 時にミルク状 |
混濁 | 上層:乳濁 | |
下層:透明 | 下層:混濁 | ||||||
特徴 | small dense LDL の存在 |
broad β |
血清TG | 血清TC | ||
内分泌代謝疾患 | 甲状腺機能低下症 | +++ | |
クッシング症候群 | + | ++ | |
先端性肥大症 | + | ||
糖尿病 | +++ | +~++ | |
痛風 | + | ||
神経性食思不振症 | ++ | ||
ウェルナー症候群 | ++ | ||
肝疾患 | 閉塞性肝・胆道疾患 | +++ | |
肝癌 | ++ | ||
腎疾患 | ネフローゼ症候群 | ++ | +++ |
慢性腎不全 | +++ | ||
免疫異常 | 全身性エリテマトーデス | +++ | |
骨髄腫 | ++ | + | |
薬剤など | サイアザイド | + | + |
β遮断薬 | + | ||
シクロスポリン | + | ||
経口避妊薬 | +++ |
治療方針の原則 | カテゴリー | 脂質管理目標値(mg/dL) | |||||
リスク群 | LDL-C以外の主要危険因子 | LDL-C | HDL-C | TG | |||
一次予防 | まず生活習慣の改善を 行った後、薬物治療の 適応を考慮する | I | 低リスク群 | 0 | <160 | ≧40 | <150 |
II | 中リスク群 | 1~2 | <140 | ||||
III | 高リスク群 | 3以上 | <120 | ||||
二次予防 | 生活習慣の改善とともに 薬物治療を考慮する | 冠動脈疾患の既往 | <100 |
微小変化型ネフローゼ症候群 | 42% |
膜性腎症 | 25% |
びまん性増殖性糸球体腎炎 | 17% |
巣状増殖性糸球体腎炎 | 12% |
膜性増殖性糸球体腎炎 | 5% |
ネフローゼの場合血中のタンパクはどんどん尿に漏出していく。そのためアルブミン、γグロブリンは割合が低下している。α2分画にはα2マクログロブリンが存在する。これは分子量が77万から82万という大きな分子であるので、ネフローゼで糸球体のサイズバリアが崩壊しているとしても尿中に排出されず残るため、相対的にα2分画が高くなる。
赤沈は第1相で赤血球同士が連銭形成し、第2相で沈んでいき、第3相では沈んできた赤血球の密度が上昇して沈降速度が鈍ってくる。赤沈が亢進するには、凝集が促進されるか、沈降の抵抗が少ないかである。赤血球の膜は負に帯電しており、正に帯電しているフィブリノゲン、γグロブリンが増加すると負の電荷同士で集まり合い凝集が促進される。逆に負に帯電しているアルブミンの量が減少すると、負同士の反発が軽減し凝集が容易になる。また貧血であると第3相で密度が低くなり沈降が早くなる。以上より、ネフローゼの場合アルブミンが尿中に排泄され血清アルブミンの濃度が低下、また、β分画のフィブリノゲンが上昇しているため赤沈は亢進する。
Lipoprotein | Source | Diameter (nm) |
Density (g/mL) |
Composition | Main Lipid Components |
Apolipoproteins | |
Protein | Lipid | ||||||
(%) | (%) | ||||||
Chylomicrons | Intestine | 90~100 | < 0.95 | 1~2 | 98.99 | Triacylglycerol | A-I, A-II, A-IV,1 B-48, C-I, C-II, C-III, E |
Chylomicron remnants | Chylomicrons | 45~150 | < 1.006 | 6~8 | 92.94 | Triacylglycerol, phospholipids, cholesterol | B-48, E |
VLDL | Liver (intestine) | 30~90 | 0.95~1.006 | 7~10 | 90~93 | Triacylglycerol | B-100, C-I, C-II, C-III |
IDL | VLDL | 25~35 | 1.006~1.019 | 11 | 89 | Triacylglycerol, cholesterol | B-100, E |
LDL | VLDL | 20~25 | 1.019~1.063 | 21 | 79 | Cholesterol | B-100 |
HDL1 | Liver, intestine, VLDL, chylomicrons | 20~25 | 1.019.1.063 | 32 | 68 | Phospholipids, cholesterol | A-I, A-II, A-IV, C-I, C-II, C-III, D,2 E |
HDL2 | 10~20 | 1.063~1.125 | 33 | 67 | |||
HDL3 | 5~10 | 1.125~1.210 | 57 | 43 | |||
Preβ-HDL3 | < 5 | > 1.210 | A-I | ||||
Albumin/free fatty | Adipose acids tissue | > 1.281 | 99 | 1 | Free fatty acids |
分画 | 蛋白質 | 分子量 |
プレアルブミン | トランスサイレチン | 55 kDa |
アルブミン | アルブミン | 66.5 kDa |
α1 | α1-酸性糖タンパク | 40 kDa |
α1-アンチトリプシン | 54 kDa | |
α1-リポ蛋白 | 13-36x10^4 kDa | |
Gc-グロブリン | 54 kDa | |
α1-α2 | セルロプラスミン | 132 kDa |
α2 | α2-マクログロブリン | 725 kDa |
ハプトグロビン | 100-400kDa | |
pre βリポ蛋白(VLDL) | 19.6x10^6 kDa | |
β | βリポ蛋白(LDL) | 2-3x10^6 kDa |
トランスフェリン | 79.6 kDa | |
ヘモペキシン | 57 kDa | |
C3 | 180 kDa | |
C4 | 210 kDa | |
β~γ | フィブリノゲン | 334 kDa |
γ | IgG | 160 kDa |
IgA | 160 kDa | |
SIgA(2IgA+SC+J) | 385 kDa | |
IgM | 971 kDa | |
CRP | ~120kDa |
泳動の方向 | 分画 | 出典不明 | 2007年後期血液 | 覚えやすく | |
+ | アルブミン | 60.5-73.2% | 4.9- 5.1 g/dL | 60-70% | 65% |
↑ | α1グロブリン | 1.7-2.9% | 0.11-0.23 g/dL | 2-3% | 2.5% |
↑ | α2グロブリン | 5.3-8.8% | 0.38-0.73 g/dL | 5-10% | 7.5% |
↑ | βグロブリン | 6.4-10.4% | 0.58-0.62 g/dL | 7-12% | 10% |
- | γグロブリン | 11-21.1% | 1.15-1.25 g/dL | 10-20% | 15% |
コレステリルエステル転送たんぱく : nothing コレステロールエステル転送たんぱく : nothing コレステリルエステル転送タンパク : 83 件 コレステロールエステル転送タンパク : 87 件 コレステリルエステル転送たんぱく質 : 約 30,500 件 コレステロールエステル転送たんぱく質 : 57 件 コレステリルエステル転送タンパク質 : nothing コレステロールエステル転送タンパク質 : 57 件 コレステリルエステル転送蛋白 : 約 29,800 件 コレステロールエステル転送蛋白 : 約 33,000 件 コレステリルエステル転送蛋白質 : 45 件 コレステロールエステル転送蛋白質 : 52 件
en
cholesterol ester transfer protein : 約 668,000 件 cholesteryl ester transfer protein : 約 108,000 件
超低密度リポ蛋白 : 約 24,100 件 超低密度リポ蛋白質 : 約 81 件 超低密度リポタンパク : 82 件 超低密度リポタンパク質 : 約 41,500 件 超低比重リポ蛋白 : 約 44,900 件 超低比重リポ蛋白質 : 約 55 件 超低比重リポタンパク : 約 21,400 件 超低比重リポタンパク質 : 約 88 件
.