出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/01/08 22:18:19」(JST)
塩酸 | |
---|---|
IUPAC名
塩化水素酸 |
|
識別情報 | |
CAS登録番号 | 7647-01-0 |
ChemSpider | 307 |
RTECS番号 | MW4025000 |
特性 | |
化学式 | HCl |
モル質量 | 36.46 g mol−1 (HCl) |
外観 | 無色透明もしくは薄い黄色の液体 |
密度 | 1.18g cm−3 |
融点 |
−27.32 °C (247 K) |
沸点 |
110 °C (383 K), |
水への溶解度 | 混和性 |
酸解離定数 pKa | −8.0 |
粘度 | 1.9 mPa·s at 25 °C, 31.5% 溶液 |
熱化学 | |
標準生成熱 ΔfH |
−92.307 kJ mol−1 |
標準モルエントロピー S |
186.908 J mol−1K−1 |
標準定圧モル比熱, Cp |
29.12 J mol−1K−1 |
危険性 | |
MSDS | External MSDS |
主な危険性 | 腐食性 |
NFPA 704 |
0
3
1
COR
|
Rフレーズ | R34, R37 |
Sフレーズ | S26, S36, S45 |
引火点 | 無し |
関連する物質 | |
その他の陰イオン | F-, Br-, I- |
関連する酸 | 臭化水素酸 フッ化水素酸 |
特記なき場合、データは常温 (25 °C)・常圧 (100 kPa) におけるものである。 |
塩酸(えんさん、hydrochloric acid)は、塩化水素(化学式HCl)の水溶液。代表的な酸のひとつで、強い酸性を示す。
本来は塩化水素酸と呼ぶべきものだが、歴史的な経緯から酸素を含む酸と同じように、塩酸と呼ばれている[1]。
塩酸の内、「濃塩酸」として市販されるものは、塩化水素の37質量% = 12 mol dm−3水溶液が一般的である。40質量%を越える溶液も調製可能だが、塩化水素の揮発が早く(蒸気圧が高く)、保管・使用に際して温度や圧力などに特別の注意を要する。また、滴定用や医薬品として濃度調製された製品も販売されている。試薬として販売されている塩酸(約35%、特級や一級など)を適度に希釈した(薄めた)塩酸という意味で、通常「希塩酸」として流通している。常温常圧下で、濃度が約25%以上の塩酸には、発煙性がある。
日本では毒物及び劇物取締法により塩化水素原体および10%を超える製剤が劇物に指定されている。
800年ごろ、錬金術師ジャービル・イブン・ハイヤーン(ラテン語名ゲベル)により食塩とヴィトリオール(vitriol、硫酸のことを示す)を混合することによって発見された。ジャービルは多くの化合物を発見・発明し、それらを20冊以上の本に著すことによって、塩酸や他の基本的な化合物に関する化学的知識を何百年にもわたって伝え続けた。彼が発明した塩酸と硝酸からなる金を溶かす液体、アクア・レギア(aqua regia、王水)は賢者の石を捜し求める錬金術師たちに貢献した。
中世、塩酸はヨーロッパの錬金術師たちに塩精 (spirit of salt) あるいはacidum salisとして知られていた。塩化水素ガスは海酸気 (marine acid air) と呼ばれた。系統的な命名法ができる前の古名muriatic acidも語源は同じである(muriatic は「海水や塩に由来する」という意味を持つ)。15世紀のドイツ・エアフルトの錬金術師・ベネディクト会修道士であったバシリウス・バレンティヌスによる製造が記録されている。
17世紀にドイツ・カールシュタット (Karlstadt am Main) のルドルフ・グラウバー (Johann Rudolf Glauber) は硫酸ナトリウムの合成に塩と硫酸を使い、塩化水素ガスを発生させた。イングランド・リーズのジョゼフ・プリーストリーは1772年に純粋な塩化水素を作り出し、イングランド・ペンザンスのハンフリー・デービーは1818年に水素と塩素を含む化合物であることを示した。
ヨーロッパにおける産業革命の時代にはソーダ灰などのアルカリの需要が増し、ニコラ・ルブランによって新しい工業的合成法が開発され、安価な大量生産が可能になっていた。ルブラン法では硫酸、石灰石、石炭を用いて塩をソーダ灰に変換するため副生物として塩化水素を発生させるが、1863年にアルカリ法が制定されるまで全て大気中に放出されていた。同法の制定後、ソーダ灰の製造者は排ガスを水に吸収させることを義務付けられたため、工業規模で大量の塩酸が製造されることになった。
20世紀初頭にはルブラン法はより効率的なソルベー法に置き換えられ、副生物として塩酸を発生させることはなくなった。しかし、このとき塩酸は多くの用途を持つ重要な化合物となっていたため、新たな製造法が開発された。今日ではイオン交換膜法による水酸化ナトリウム製造の際の副産物である塩素と水素とを反応させ、生成した塩化水素を水に溶かすことによって製造されている。また、炭化水素を塩素化する際の副生品としても得られる。(詳しくは製法の項を参照)
医薬・農薬・調味料の合成など、工業的用途は極めて多岐に亘る。洗浄など日常用の用途には 10% から 12% の濃度の塩酸が販売されており、これを薄めて使用することが強く勧められている。例えばトイレ用の洗剤としても用いられ、塩化水素10%未満を含有する塩酸を主成分としたものが一般家庭向けに市販されている。
高等学校までの理科、化学の実験において、水酸化ナトリウムとともによく使用される薬品である。小学校六年の理科の実験(水溶液の性質)においては、希塩酸がアンモニア水や水酸化ナトリウムと並ぶ代表的な試薬である。リトマス試験紙やBTB溶液で性質を調べ、性質ごとに薬品を分けるなどの実験に使用される。また、中学校三年の理科Ⅰ分野の実験(中和と塩)では水酸化ナトリウムと中和させる実験、高等学校では酸・塩基・中和の実験などに使用される。
水酸化物の中和や、酸化物などからの塩化物の合成にも利用される。(例: HCl + KOH → KCl + H2O 〔塩酸+水酸化カリウム→塩化カリウム+水〕となる。)
濃塩酸 3:濃硝酸 1の体積比で混合したものは王水と呼ばれ、高い酸化力をもつため、金や白金など、酸に対する耐性の高い金属の塩類製造に用いられる。
ヘロインやコカインの製造にも使われるため、麻薬及び向精神薬不正取引防止条約においてテーブル II 前駆体に指定されている。
胃酸としてヒトなどの胃液にも含まれており、消化や殺菌の役割を果たしているが、ヘリコバクター・ピロリなど胃酸を局所的に中和して胃の内部で生息する細菌も存在する。
化学的性質は塩化水素の項に詳しい。水溶液としての性質を以下に挙げる。
分類の名称 : 急性毒性物質、腐食性物質 環境影響 : 酸性溶液である為、水棲生物に対して有害な影響を及ぼす可能性がある。 有害性 : 眼、皮膚、気道に対して刺激性を有し、高濃度のガスを吸入すると、肺水腫を起こすことがある。これらの影響は遅れて現れる事がある。この物質は肺に影響を与え、慢性気管支炎を生じることがある。また歯を侵食する事がある。 物理的及び化学的危険性 : この水溶液は強酸であり、塩基と激しく反応し、腐食性を示す。酸化剤と激しく反応し、有毒なガス(塩素)を生成する。空気に触れると腐食性のフューム(塩酸)を発生する。多くの金属を侵して可燃性ガス(水素)を生成することが多くある。
眼に入った場合 :直ちに多量の水道水(流水)で15分間以上洗浄する。洗浄が遅れたり、不十分だと眼の障害を生ずる恐れがある。すぐに眼科医の診断を受ける。コンタクトレンズを使用している場合は、固着していない限り取り除いて洗浄する。
皮膚に付着した場合 : 直ちに汚染された衣装や靴などを脱がせて、付着又は接触部を多量の水で洗い流す。外観に変化がみられたり、痛みが続く場合は医師の診断を受ける。
吸入した場合 ; 直ちに患者を毛布等に包んで安静にさせ、新鮮な空気が得られる場所に移し、できれば酸素吸入を行う。肺水腫を起こす可能性があるため、直ちに医師の診断を受ける。
飲み込んだ場合 :直ちに口の中を水で洗浄し、大量の水を飲ませて医師の手当てを受ける。無理に吐かせない。被災者に意識がない場合は、口から何も与えてはならない。
電解槽などから発生する塩素と水素を燃焼させて塩化水素ガスを生成させる。次に、塩化水素ガスを水に吸収させて塩酸を製造する。高純度の塩酸が合成できる。1 mol 当り 92.3 kJ の反応熱を取り除くため、製造工場では大量の冷却水を消費する。
塩酸の主要な供給源は、テフロン、フロン、クロロ酢酸、ポリ塩化ビニルなど、塩素化またはフッ素化された有機化合物を製造する際の副生物である。この場合しばしば製造場所で他の工程にそのまま用いられる。次に示す化学反応によって、炭化水素の水素原子が塩素原子に置き換えられ、遊離した水素原子は塩素分子の残りの塩素原子と結合し、塩化水素となる。フルオロ化する場合は塩素原子と置換反応を行うため、再び塩化水素が生成する。
発生した塩化水素はそのまま再利用されるか、水に溶かして工業用品質(テクニカルグレード)の塩酸とする。
主要な製造企業はダウケミカル社(塩化水素ガスとして2メガトン/年)、フォルモサプラスティック(台湾プラスティック)社、ジョージア・ガルフ社、東ソー、アクゾノーベル社、テッセンデルロ社(それぞれ0.5から1.5メガトン/年)である。全世界での製造量は(比較のため)塩化水素としておよそ20メガトン/年で、うち3メガトン/年が直接合成によるものである。大部分は製造者によってそのまま使用される。全世界での流通量はおよそ5メガトン/年である。
2008年度日本国内生産量は2,386,586 t(合成760,658t, 副生1,625,928t)、消費量は 857,599 tである[2]。
[ヘルプ] |
ウィキメディア・コモンズには、塩酸に関連するカテゴリがあります。 |
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
国試過去問 | 「100H028」「104I078」「099B028」 |
リンク元 | 「有機スズ化合物」「次亜塩素酸」「濫用薬物」「無塩酸症」「テタノブリン」 |
拡張検索 | 「塩酸セファレキシン」 |
関連記事 | 「酸」 |
D
※国試ナビ4※ [100H027]←[国試_100]→[100H029]
E
※国試ナビ4※ [104I077]←[国試_104]→[104I079]
D
※国試ナビ4※ [099B027]←[国試_099]→[099B029]
http://ja.wikipedia.org/wiki/%E6%9C%89%E6%A9%9F%E3%82%B9%E3%82%BA%E5%8C%96%E5%90%88%E7%89%A9 有機スズ化合物(ゆうきスズかごうぶつ)またはスタナン (stannane) は炭化水素などの有機置換基を持つスズ化合物である。最初の有機スズ化合物はジメチルジヨードスズ (CH3)2SnI2 で、これは1849年にエドワード・フランクランドによって発見された。商業的にはポリ塩化ビニルを製造する際の塩酸の捕捉剤や熱的安定化剤、あるいは殺生物剤として利用される。酸化ビス(トリブチルスズ) (TBTO) は材木の防腐剤として広く用いられている。トリブチルスズ誘導体はフジツボなどの付着生物を船体から除去する薬剤としても使われたが、毒性の高さ(1リットルあたり1ナノグラムの濃度でも海洋生物に影響を与えるとする報告もある)への懸念から国際海事機関によって世界中で禁止されるに至った。N-ブチルトリクロロスズは、化学気相成長法を使ってガラスの表面に酸化スズの膜を乗せるのに用いられる。
有機スズ化合物の合成法として以下のものが知られる<ref>Thoonen, S. H. L.; Deelman, B.-J.; van Koten, G. (2004). "Synthetic aspects of tetraorganotins and organotin(IV) halides". J. Organomet. Chem. 689: 2145?2157. テンプレート:doi. オンライン版</ref>。
グリニャール試薬を経由する合成例としてトリブチル[(Z)-5-フェニル-2-ペンテン-2-イル]スタナンの合成を示す<ref>Stoermer, M. J.; Pinhey, J. T. (1998). "Tributyl-[(Z)-5-phenyl-2-penten-2-yl]stannane". Molecules 3: M67. オンライン版</ref>。
乾燥テトラヒドロフラン中で削り状マグネシウムと (Z)-2-ブロモ-5-フェニル-2-ペンテンからグリニャール試薬を調製し、溶液が脱色するまで塩化トリブチルスズで滴定する。得られた溶液を室温で1時間撹拌してからエバポレーターで溶媒を留去する。残渣をジエチルエーテルで抽出したのち溶液を飽和食塩水で洗い、ろ過・溶媒留去を行う。粗生成物をクーゲルロールで蒸留すると、トリブチル[(Z)-5-フェニル-2-ペンテン-2-イル]スタナンが無色のオイルとして得られる。
4有機置換スズは非常に安定であり、毒性や生理活性も低い。殺生物剤としては作用しないが、代謝されると有毒な3有機置換スズになる。触媒を合成する際の前駆体として利用される。
3有機置換スズは非常に毒性が高い。トリ-n-アルキルスズは植物毒性を持つため農薬として使用できない。持っている有機置換基によっては強力な殺菌剤 (農薬その他)や殺真菌剤となり得る。トリブチルスズは布や紙、木材パルプ、およびビール醸造所、冷却機の殺真菌剤として利用される。トリフェニルスズは抗真菌塗料の活性成分である。その他の3有機置換スズは殺ダニ剤(ダニ駆除薬)として使われる。
ジフェニルスズを除く2有機置換スズは抗真菌活性を持たず、毒性・抗菌活性も低い。ポリマーの製造やポリ塩化ビニルの熱安定化剤、触媒、ポリウレタンの製造、シリコーンゴムの硬化剤といった用途を持つ。
1有機置換スズは殺生物剤としての活性を持たない。哺乳類に対する毒性は非常に低い。メチルスズ、ブチルスズ、オクチルスズ、モノエステルスズはポリ塩化ビニルの熱安定化剤として用いられる。
<references /> 共にオンラインで全文が閲覧可能(英語)。
次亜塩素酸(じあえんそさん、Hypochlorous acid)は塩素のオキソ酸の1つで、塩素の酸化数は+1である。組成式では HClO と表わされるが、水素原子と塩素原子が酸素原子に結合した構造 H−O−Cl を持つ。不安定な物質であり水溶液中で徐々に分解する。次亜塩素酸および次亜塩素酸の塩類は酸化剤、漂白剤、外用殺菌剤、消毒剤として利用される。
実験室的には水酸化カリウム水溶液などに塩素を通じたりして調整した次亜塩素酸塩水溶液を硫酸で中和し、水蒸気蒸留して遊離酸の水溶液を得る。また、酸化水銀 の四塩化炭素懸濁液に塩素を通じた後に水で抽出したり、あるいは酸化ビスマスを水懸濁液中に塩素を通じることで遊離酸の水溶液を得る方法も知られている。
薄い水溶液としては存在するが、25%以上の濃度では一酸化二塩素に変化するので遊離酸を単離することはできない。濃厚水溶液は淡黄色である。また、遊離酸が弱酸 (pKa = 7.53)<ref>「次亜塩素酸」、『岩波理化学辞CD-ROM版』 第5版、岩波書店、1998年。</ref> のため、次亜塩素酸ナトリウムなどの次亜塩素酸塩水溶液はかなり強い塩基性を示す。
水溶液中でも不安定で、次のような不均化により塩化水素を放出しながら徐々に分解する。
次亜塩素酸やその塩の水溶液は、カルキ臭と呼ばれるプールの消毒槽のようなにおいを持つ。
また、塩素を水に溶かすと、次のような平衡により一部が塩酸と次亜塩素酸となる<ref>「次亜塩素酸」、『世界百科事典CD-ROM版』 V1.22、平凡社、1998年。</ref>。
{\rm Cl_2 + H_2O \ \overrightarrow\longleftarrow \ HCl + HClO} \quad K _{\rm w}=1.56 \times 10^{-4} </math> すなわち、中性~酸性条件ではこの反応はあまり進行しないが、アルカリ性条件では生成する遊離酸が次亜塩素酸塩となり平衡が右に偏るので、次亜塩素酸塩を製造する方法の1つとなる。
\rm Cl_2O + H_2O \longrightarrow 2HClO </math>
\rm HClO + H_2O_2 \longrightarrow HCl + H_2O + O_2 </math>
<references />
毒物及び劇薬取締法 | 毒物 | シアン化合物、ヒ素、黄リン、水銀、ニコチン |
劇物 | 硫酸、硝酸、塩酸、メタノール | |
特定毒物 | パラチオン、四アルキル鉛、メタノール | |
毒薬 | アトロピン、ジギタリス配糖体、スコポラミン、ストリキニーネ | |
劇薬 | カフェイン、プロカイン | |
麻薬及び向精神薬取締法 | 麻薬 | アヘンアルカロイド、コカイン、合成麻薬、LSD |
第1腫向精神薬 | セロバルビタール、メチルフェニデート | |
第2腫向精神薬 | アキサゾラム、ペンタゾシン、ペントバルビタール | |
第3腫向精神薬 | アロバルビタール、オキサゾラム、クロルジアゼポキシド、ジアゼパム、トリアゾラム、フェノバルビタール、トラゼパム | |
覚醒剤取締法 | 覚醒剤 | アンフェタミン、メタンフェタミン |
大麻取締法 | 大麻 | 大麻草及び製品 |
あへん法 | けし属 | けし、けしがら、アヘン |
[★] 破傷風抗毒素、ポリエチレングリコール、グリシン、D-マンニトール、塩化ナトリウム、水酸化ナトリウム、塩酸
.