出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/07/06 21:26:20」(JST)
有機ケイ素化合物(ゆうきケイそかごうぶつ)は炭素−ケイ素結合を持つ有機化合物の総称であり、有機ケイ素化学はそれらの物性・反応性などを研究する化学である[1]。炭素と同様、有機ケイ素化合物中のケイ素原子は4価であり、四面体型構造をとる。最初の有機ケイ素化合物はテトラエチルシランで、これは1863年、シャルル・フリーデルとジェームス・クラフツによって四塩化ケイ素とジエチル亜鉛の反応で合成された。
炭素とケイ素を含む最も単純な化合物は炭化ケイ素であり、1893年に発見されて以来多くの工業的用途が見出されている。
ケイソウをはじめとしてケイ酸塩を利用する生物は多数見られることや、植物に対してケイ素が多くの有益な効果をもたらすこと[2]などから、生物にとってケイ素は密接な関わりがあるとされる。また、ケイ素は有機化合物を構成する炭素と同族の元素であることから、ケイ素を主要な構成要素とする生物(ケイ素生物)がしばしばSF作品などで取り上げられる。しかしながら、これまでのところ生体物質中に有機ケイ素化合物そのものがみられた例は知られていない[3]。
炭素−ケイ素結合は炭素−炭素結合に比べて長く(それぞれ 184 pm, 154 pm)、解離エネルギーも小さい(それぞれ 451 kJ/mol, 607 kJ/mol[4])。電気陰性度の違いのため (C, 2.55; Si, 1.90) C−Si 結合は極性がやや偏っており、炭素は負電荷を帯びる。この傾向は細見・櫻井反応で確認される。テトラメチルシランなどを含むシラン類の化学的性質は、熱的安定性などの点においてアルカンに類似する。
β-ケイ素効果は β位のケイ素原子がカルボカチオンを安定化させ、その反応性に影響を及ぼす効果である。
ケイ素と酸素の結合距離は C−O 結合に比べて非常に短く、また強い(それぞれ 809 kJ/mol, 538 kJ/mol)。極性は酸素原子に偏っている。例としてシロキサンやその重合体であるポリシロキサンが挙げられる。また、シリルエーテルはアルコールの保護基として広く用いられる。Si−O 結合よりも強いのはケイ素−フッ素結合のみであるため、脱保護にはフッ素を含む化合物(フッ化テトラ-n-ブチルアンモニウム (TBAF) やジフルオロトリメチルケイ酸トリス(ジメチルアミノ)スルホニウム (TASF)、テトラブチルアンモニウムジフルオロトリフェニルシリケート (TBAT) など)が有効である。Si−O 結合の生成しやすさを利用した化学反応は数多く、ブルック転位やピーターソン反応などが知られている。
ケイ素−水素結合は C−H 結合よりも長く(それぞれ 148 pm, 105 pm)弱い(それぞれ 299 kJ/mol, 338 kJ/mol)。負電荷を帯びるのは水素原子のほうであるため、ケイ素化水素でなくシリルヒドリド(水素化ケイ素)と呼ばれる。シリルヒドリドは反応性が非常に高く、ポリ(メチルヒドリドシロキサン) (PMHS) などは還元剤として用いられる。
トリエチルシリルヒドリドがアジ化フェニルをアニリンに変換する試薬として用いられた例が報告されている[5]。
この反応では、アゾビス(シクロヘキサンカルボニトリル) (ACCN) がラジカル開始剤として、脂肪族チオールがシリルヒドリドへラジカルを転移させる試薬として用いられている。発生したトリエチルシリルラジカルがアジドと反応すると窒素分子の遊離を伴って N-シリルアリールアミニルラジカルを生成させ、これがチオールから水素を引き抜き、触媒サイクルを形成する。水で後処理を行うとアニリンが得られる。
炭素の誘導体と異なり、二重結合を含む有機ケイ素化合物はあまり知られていない。これは、Si=C結合が高い反応性を持つためであり、その結果、オリゴマー化や水や酸素と容易に反応する。Si=C 結合を持つ化合物としてベンゼンのケイ素類縁体であるシラベンゼン、Si=Si 結合を持つ化合物としてジシレンなどが研究の対象となっている。
なお、ケイ素-ケイ素三重結合 (Si≡Si) を含む有機ケイ素化合物が2004年に筑波大学の関口章らにより合成された。その中心の Si-Si≡Si-Si 構造ではアセチレンの場合と異なり、Si-Si≡Si の結合角が 137°に折れ曲がっている[6][7]。
これらの不飽和結合はそのままでは反応性が高く安定に存在させられないため、かさ高い置換基の立体障害により速度論的な安定化が施されている。
リンク元 | 「有機スズ化合物」 |
関連記事 | 「化合」「有機」「化合物」 |
http://ja.wikipedia.org/wiki/%E6%9C%89%E6%A9%9F%E3%82%B9%E3%82%BA%E5%8C%96%E5%90%88%E7%89%A9 有機スズ化合物(ゆうきスズかごうぶつ)またはスタナン (stannane) は炭化水素などの有機置換基を持つスズ化合物である。最初の有機スズ化合物はジメチルジヨードスズ (CH3)2SnI2 で、これは1849年にエドワード・フランクランドによって発見された。商業的にはポリ塩化ビニルを製造する際の塩酸の捕捉剤や熱的安定化剤、あるいは殺生物剤として利用される。酸化ビス(トリブチルスズ) (TBTO) は材木の防腐剤として広く用いられている。トリブチルスズ誘導体はフジツボなどの付着生物を船体から除去する薬剤としても使われたが、毒性の高さ(1リットルあたり1ナノグラムの濃度でも海洋生物に影響を与えるとする報告もある)への懸念から国際海事機関によって世界中で禁止されるに至った。N-ブチルトリクロロスズは、化学気相成長法を使ってガラスの表面に酸化スズの膜を乗せるのに用いられる。
有機スズ化合物の合成法として以下のものが知られる<ref>Thoonen, S. H. L.; Deelman, B.-J.; van Koten, G. (2004). "Synthetic aspects of tetraorganotins and organotin(IV) halides". J. Organomet. Chem. 689: 2145?2157. テンプレート:doi. オンライン版</ref>。
グリニャール試薬を経由する合成例としてトリブチル[(Z)-5-フェニル-2-ペンテン-2-イル]スタナンの合成を示す<ref>Stoermer, M. J.; Pinhey, J. T. (1998). "Tributyl-[(Z)-5-phenyl-2-penten-2-yl]stannane". Molecules 3: M67. オンライン版</ref>。
乾燥テトラヒドロフラン中で削り状マグネシウムと (Z)-2-ブロモ-5-フェニル-2-ペンテンからグリニャール試薬を調製し、溶液が脱色するまで塩化トリブチルスズで滴定する。得られた溶液を室温で1時間撹拌してからエバポレーターで溶媒を留去する。残渣をジエチルエーテルで抽出したのち溶液を飽和食塩水で洗い、ろ過・溶媒留去を行う。粗生成物をクーゲルロールで蒸留すると、トリブチル[(Z)-5-フェニル-2-ペンテン-2-イル]スタナンが無色のオイルとして得られる。
4有機置換スズは非常に安定であり、毒性や生理活性も低い。殺生物剤としては作用しないが、代謝されると有毒な3有機置換スズになる。触媒を合成する際の前駆体として利用される。
3有機置換スズは非常に毒性が高い。トリ-n-アルキルスズは植物毒性を持つため農薬として使用できない。持っている有機置換基によっては強力な殺菌剤 (農薬その他)や殺真菌剤となり得る。トリブチルスズは布や紙、木材パルプ、およびビール醸造所、冷却機の殺真菌剤として利用される。トリフェニルスズは抗真菌塗料の活性成分である。その他の3有機置換スズは殺ダニ剤(ダニ駆除薬)として使われる。
ジフェニルスズを除く2有機置換スズは抗真菌活性を持たず、毒性・抗菌活性も低い。ポリマーの製造やポリ塩化ビニルの熱安定化剤、触媒、ポリウレタンの製造、シリコーンゴムの硬化剤といった用途を持つ。
1有機置換スズは殺生物剤としての活性を持たない。哺乳類に対する毒性は非常に低い。メチルスズ、ブチルスズ、オクチルスズ、モノエステルスズはポリ塩化ビニルの熱安定化剤として用いられる。
<references /> 共にオンラインで全文が閲覧可能(英語)。
.