出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/07/29 14:32:51」(JST)
Organotin compounds or stannanes are chemical compounds based on tin with hydrocarbon substituents. Organotin chemistry is part of the wider field of organometallic chemistry. The first organotin compound was diethyltin diiodide ((C2H5)2SnI2), discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn-C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.[1]
Organotin compounds are generally classified according to their oxidation states. Tin(IV) compounds are much more common and more useful.
The entire series R4−nSnCln are known for many R groups and values of n up to 4. The tetraorgano derivatives are invariably tetrahedral. Compounds of the type SnRR'RR' have been resolved into individual enantiomers.[2]
The mixed organic-chloro compounds are also tetrahedral, although they form adducts with good Lewis bases such as pyridine. The fluoride tend to associate such that dimethyltin difluoride forms sheet-like polymers. The mixed organic tin hydrides, e.g. dialkyltin dihydride, are also generally monomeric. The parent member of this series, stannane (SnH4), is an unstable colourless gas.
Organotin oxides and hydroxides are common products from the hydrolysis of organotin halides. Unlike the corresponding derivatives of silicon and germanium, tin oxides and hydroxides often adopt structures with penta- and even hexacoordinated tin centres, especially for the diorgano- and monoorgano derivatives. The group Sn-O-Sn is called a stannoxane. Structurally simplest of the oxides and hydroxides are the triorganotin derivatives. A commercially important triorganotin hydroxides is the acaricide Cyhexatin (also called Plictran), (C6H11)3SnOH. Such triorganotin hydroxides exist in equilibrium with the distannoxanes:
With only two organic substituents on each Sn centre, the diorganotin oxides and hydroxides are structurally more complex than the triorgano derivatives.[3] The simple geminal diols (R2Sn(OH)2) and monomeric stannanones (R2Sn=O) are unknown. Diorganotin oxides (R2SnO) are polymers except when the organic substituents are very bulky, in which case cyclic trimers or, in the case of R = CH(SiMe3)2 dimers, with Sn3O3 and Sn2O2 rings. The distannoxanes exist as dimers of dimers with the formula [R2SnX]2O2 wherein the X groups (e.g., chloride, hydroxide, carboxylate) can be terminal or bridging (see Table). The hydrolysis of the monoorganotin trihalides has the potential to generate stannanoic acids, RSnO2H. As for the diorganotin oxides/hydroxides, the monoorganotin species form structurally complex because of the occurrence of dehydration/hydration, aggregation. Illustrative is the hydrolysis of butyltin trichloride to give [(BuSn)12O14(OH)6]2+.
|
|
|
|
|
|
Unlike carbon(IV) analogues but somewhat like silicon compounds, tin(IV) can also be coordinated to five and even six atoms instead of the regular four. These hypercoordinated compounds usually have electronegative substituents. Numerous examples of hypervalency are provided by the organotin oxides and associated carboxylates and related pseudohalide derivatives.[3] The organotin halides for adducts, e.g. Me2SnCl2(bipyridine.
The all-organic penta- and hexaorganostannates have even been characterized,[4] while in the subsequent year a six-coordinated tetraorganotin compound was reported.[5] A crystal structure of room-temperature stable (in argon) all-carbon pentaorganostannane was reported as the lithium salt with this structure:[6]
In this distorted trigonal bipyramidal structure the carbon to tin bond lengths (2.26 Å apical, 2.17 Å equatorial) are larger than regular C-Sn bonds (2.14 Å) reflecting its hypervalent nature.
Some reactions of triorganotin halides implicate a role for R3Sn+ intermediates. Such cations are analogous to carbocations. They have been characterized crystallographically when the organic substituents are large, such as 2,4,6-triisopropylphenyl.[7]
Tin radicals, with the formula R3Sn, are called stannyl radicals.[1] They are invoked as intermediates in certain atom-transfer reactions. For example, tributyltin hydride (tri-n-butylstannane) serves as a useful source of "hydrogen atoms" because of the stability of the tributytin radical.[8]
Organotin(II) compounds are somewhat rare. Compounds with the empirical formula SnR2 are somewhat fragile and exist as rings or polymers when R is not bulky. The polymers, called polystannanes, have the formula (SnR2)n.
In principle divalent tin compounds might be expected to form analogues of alkenes with a formal double bond. Indeed compounds with the formula Sn2R4, called distannenes, are known for certain organic substituents. The Sn centres tend to be highly pyramidal. Monomeric compounds with the formula SnR2, analogues of carbenes are also known in a few cases. One example is Sn(SiR3)2, where R is the very bulky CH(SiMe3)2 (Me = methyl). Such species reversibly dimerize to the distannylene upon crystallization:[9]
Stannenes, compounds with tin–carbon double bonds, are exemplified by derivatives of stannabenzene. Stannoles, structural analogs of cyclopentadiene, exhibit little C-Sn double bond character.
Compounds of Sn(I) are rare and only observed with very bulky ligands. One prominent family of cages is accessed by pyrolysis of the 2,6-diethylphenyl-substituted tristannylene [Sn(C6H3-2,6-Et2)2]3, which affords the cubane and a prismane. These cages contain Sn(I) and have the formula [Sn(C6H3-2,6-Et2)]n where n = 8, 10.[10] A stannyne contains a carbon to tin triple bond and a distannyne a triple bond between two tin atoms (RSnSnR). Distannynes only exist for extremely bulky substituents. Unlike alkynes, the C-Sn-Sn-C core of these distannynes are nonlinear, although they are planar. The Sn-Sn distance is 3.066(1) Å, and the Sn-Sn-C angles are 99.25(14)°. Such compounds are prepared by reduction of bulky aryltin(II) halides.[11]
Organotin compounds can be synthesised by numerous methods.[12] Classic is the reaction of a Grignard reagent with tin halides for example tin tetrachloride. An example is provided by the synthesis of tetraethyltin:[13]
The symmetrical tetraorganotin compounds can then be converted to various mixed chlorides by redistribution reactions (also known as the "Kocheshkov comproportionation"):
A related method involves redistribution of tin halides with organoaluminium compounds.
The mixed organo-halo tin compounds can be converted to the mixed organic derivatives, as illustrated by the synthesis of dibutyldivinyltin:[14]
The organotin hydrides are generated by reduction of the mixed alkyl chlorides. For example, treatment of dibutyltin dichloride with lithium aluminium hydride gives the dibutyltin dihydride, a colourless distillable oil:[15]
The Wurtz-like coupling of alkyl sodium compounds with tin halides yields tetraorganotin compounds.
Important reactions, discussed above, usually focus on organotin halides and pseudohalides with nucleophiles and nucleophiles. In the area of organic synthesis, the Stille reaction is considered important. It entails coupling reaction with sp2-hybridized organic halides catalyzed by palladium:
and organostannane additions (nucleophilic addition of an allyl-, allenyl-, or propargylstannanes to an aldehydes and imines). Organotin compounds are also used extensively in radical chemistry (e.g. radical cyclizations, Barton–McCombie deoxygenation, Barton decarboxylation, etc.).
An organotin compound is commercially applied as stabilizers in polyvinyl chloride. In this capacity, they suppress degradation by removing allylic chloride groups and by absorbing hydrogen chloride. This application consumes about 20,000 tons of tin each year. The main class of organotin compounds are diorganotin dithiolates with the formula R2Sn(SR')2. The Sn-S bond is the reactive component. Diorganotin carboxylates, e.g., dibutyltin dilaurate, are used as catalysts for the formation of polyurethanes, for vulcanization of silicones, and transesterification.[1]
n-Butyltin trichloride is used in the production of tin dioxide layers on glass bottles by chemical vapor deposition.
"Tributyltins" are used as industrial biocides, e.g. as antifungal agents in textiles and paper, wood pulp and paper mill systems, breweries, and industrial cooling systems. Triphenyltin derivativess are used as active components of antifungal paints and agricultural fungicides. Other triorganotins are used as miticides and acaricides. Tributyltin oxide has been extensively used as a wood preservative.[1][1]
Tributyltin compounds were once widely used as marine anti-biofouling agents to improve the efficiency of ocean-going ships. Concerns over toxicity[16] of these compounds (some reports describe biological effects to marine life at a concentration of 1 nanogram per liter) led to a worldwide ban by the International Maritime Organization.
Organotin complexes have been studied in anticancer therapy.[17]
Tetrabutyltin starting material for the di- and tributyl compounds
Tributyltin oxide, a colorless to pale yellow liquid used in wood preservation
Triphenyltin acetate, an off-white crystalline solid, used as an insecticide and a fungicide
Triphenyltin chloride, a white crystalline solid, used as a biocide and an intermediate in chemical synthesis
Trimethyltin chloride also a biocide
Triphenyltin hydroxide, an off-white powder, used as a fungicide and to sterilize insects
Azocyclotin, a colorless crystalline solid, used as a long-acting acaricide for control of spider mites on plants
Cyhexatin, a white crystalline solid, used as an acaricide and miticide
Hexamethylditin used as an intermediate in chemical synthesis
Tetraethyltin, boiling point 63–65° /12 mm is a catalyst[18]
Triorganotin compounds can be highly toxic. Tri-n-alkyltins are phytotoxic and therefore cannot be used in agriculture. Depending on the organic groups, they can be powerful bactericides and fungicides. Reflecting their high bioactivity, "tributyltins" were once used in marine anti-fouling paint.[1]
Tetraorgano-, diorgano-, and monoorganotin compounds generally exhibit low toxicity and low biological activity. DBT may however be immunotoxic.[19]
CH | He | ||||||||||||||||
CLi | CBe | CB | CC | CN | CO | CF | Ne | ||||||||||
CNa | CMg | CAl | CSi | CP | CS | CCl | CAr | ||||||||||
CK | CCa | CSc | CTi | CV | CCr | CMn | CFe | CCo | CNi | CCu | CZn | CGa | CGe | CAs | CSe | CBr | CKr |
CRb | CSr | CY | CZr | CNb | CMo | CTc | CRu | CRh | CPd | CAg | CCd | CIn | CSn | CSb | CTe | CI | CXe |
CCs | CBa | CHf | CTa | CW | CRe | COs | CIr | CPt | CAu | CHg | CTl | CPb | CBi | CPo | CAt | Rn | |
Fr | CRa | Rf | Db | CSg | Bh | Hs | Mt | Ds | Rg | Cn | Uut | Fl | Uup | Lv | Uus | Uuo | |
↓ | |||||||||||||||||
CLa | CCe | CPr | CNd | CPm | CSm | CEu | CGd | CTb | CDy | CHo | CEr | CTm | CYb | CLu | |||
Ac | CTh | CPa | CU | CNp | CPu | CAm | CCm | CBk | CCf | CEs | Fm | Md | No | Lr |
Core organic chemistry | Many uses in chemistry |
Academic research, but no widespread use | Bond unknown |
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「有機スズ化合物」 |
関連記事 | 「compound」 |
http://ja.wikipedia.org/wiki/%E6%9C%89%E6%A9%9F%E3%82%B9%E3%82%BA%E5%8C%96%E5%90%88%E7%89%A9 有機スズ化合物(ゆうきスズかごうぶつ)またはスタナン (stannane) は炭化水素などの有機置換基を持つスズ化合物である。最初の有機スズ化合物はジメチルジヨードスズ (CH3)2SnI2 で、これは1849年にエドワード・フランクランドによって発見された。商業的にはポリ塩化ビニルを製造する際の塩酸の捕捉剤や熱的安定化剤、あるいは殺生物剤として利用される。酸化ビス(トリブチルスズ) (TBTO) は材木の防腐剤として広く用いられている。トリブチルスズ誘導体はフジツボなどの付着生物を船体から除去する薬剤としても使われたが、毒性の高さ(1リットルあたり1ナノグラムの濃度でも海洋生物に影響を与えるとする報告もある)への懸念から国際海事機関によって世界中で禁止されるに至った。N-ブチルトリクロロスズは、化学気相成長法を使ってガラスの表面に酸化スズの膜を乗せるのに用いられる。
有機スズ化合物の合成法として以下のものが知られる<ref>Thoonen, S. H. L.; Deelman, B.-J.; van Koten, G. (2004). "Synthetic aspects of tetraorganotins and organotin(IV) halides". J. Organomet. Chem. 689: 2145?2157. テンプレート:doi. オンライン版</ref>。
グリニャール試薬を経由する合成例としてトリブチル[(Z)-5-フェニル-2-ペンテン-2-イル]スタナンの合成を示す<ref>Stoermer, M. J.; Pinhey, J. T. (1998). "Tributyl-[(Z)-5-phenyl-2-penten-2-yl]stannane". Molecules 3: M67. オンライン版</ref>。
乾燥テトラヒドロフラン中で削り状マグネシウムと (Z)-2-ブロモ-5-フェニル-2-ペンテンからグリニャール試薬を調製し、溶液が脱色するまで塩化トリブチルスズで滴定する。得られた溶液を室温で1時間撹拌してからエバポレーターで溶媒を留去する。残渣をジエチルエーテルで抽出したのち溶液を飽和食塩水で洗い、ろ過・溶媒留去を行う。粗生成物をクーゲルロールで蒸留すると、トリブチル[(Z)-5-フェニル-2-ペンテン-2-イル]スタナンが無色のオイルとして得られる。
4有機置換スズは非常に安定であり、毒性や生理活性も低い。殺生物剤としては作用しないが、代謝されると有毒な3有機置換スズになる。触媒を合成する際の前駆体として利用される。
3有機置換スズは非常に毒性が高い。トリ-n-アルキルスズは植物毒性を持つため農薬として使用できない。持っている有機置換基によっては強力な殺菌剤 (農薬その他)や殺真菌剤となり得る。トリブチルスズは布や紙、木材パルプ、およびビール醸造所、冷却機の殺真菌剤として利用される。トリフェニルスズは抗真菌塗料の活性成分である。その他の3有機置換スズは殺ダニ剤(ダニ駆除薬)として使われる。
ジフェニルスズを除く2有機置換スズは抗真菌活性を持たず、毒性・抗菌活性も低い。ポリマーの製造やポリ塩化ビニルの熱安定化剤、触媒、ポリウレタンの製造、シリコーンゴムの硬化剤といった用途を持つ。
1有機置換スズは殺生物剤としての活性を持たない。哺乳類に対する毒性は非常に低い。メチルスズ、ブチルスズ、オクチルスズ、モノエステルスズはポリ塩化ビニルの熱安定化剤として用いられる。
<references /> 共にオンラインで全文が閲覧可能(英語)。
.