Proteinuria
ICD-10 |
R80 |
ICD-9 |
791.0 |
DiseasesDB |
25320 |
eMedicine |
med/94 |
MeSH |
D011507 |
Proteinuria (// or //; from protein and urine) means the presence of an excess of serum proteins in the urine. The excess protein in the urine often causes the urine to become foamy, although foamy urine may also be caused by bilirubin in the urine (bilirubinuria),[1] retrograde ejaculation,[2] pneumaturia (air bubbles in the urine) due to a fistula,[3] or drugs such as pyridium.[1]
Contents
- 1 Causes
- 2 Measurement
- 3 Associated conditions
- 3.1 Conditions with proteinuria as a sign
- 3.2 Conditions with proteinuria consisting mainly of Bence-Jones proteins as a sign
- 4 Treatment
- 5 See also
- 6 References
Causes[edit]
There are three main mechanisms to cause proteinuria:
- Due to disease in glomerulus
- Because of increased quantity of proteins in serum (overflow proteinuria)
- Due to low reabsorption at proximal tubule (Fanconi syndrome)
Proteinuria can also be caused by certain biological agents, such as bevacizumab (Avastin) used in cancer treatment, or by excessive fluid intake (drinking in excess of 4 litres of water per day).[4][5]
Measurement[edit]
Protein dipstick grading |
Designation |
Approx. amount |
Concentration[6] |
Daily[7] |
Trace |
5–20 mg/dL |
|
1+ |
30 mg/dL |
Less than 0.5 g/day |
2+ |
100 mg/dL |
0.5–1 g/day |
3+ |
300 mg/dL |
1–2 g/day |
4+ |
More than 300 mg/dL |
More than 2 g/day |
Conventionally, proteinuria is diagnosed by a simple dipstick test, although it is possible for the test to give a false negative reading,[8] even with nephrotic range proteinuria if the urine is dilute.[citation needed] False negatives may also occur if the protein in the urine is composed mainly of globulins or Bence-Jones proteins because the reagent on the test strips, bromphenol blue, is highly specific for albumin.[9][10] Traditionally, dipstick protein tests would be quantified by measuring the total quantity of protein in a 24-hour urine collection test, and abnormal globulins by specific requests for protein electrophoresis.[1][11] Trace results may be produced in response to excretion of Tamm-Horsfall mucoprotein.
Recent technologies used to detect human serum albumin (HSA) is through the use of liquid crystals (LCs). The presence of HSA molecules disrupts the LCs supported on the AHSA-decorated slides thereby producing bright optical signals which are easily distinguishable.=using this assay can be as low as 15 ug/mL.[12]
Alternatively the concentration of protein in the urine may be compared to the creatinine level in a spot urine sample. This is termed the protein/creatinine ratio (PCR). The 2005 UK Chronic Kidney Disease guidelines states PCR is a better test than 24 hour urinary protein measurement. Proteinuria is defined as a protein/creatinine ratio greater than 45 mg/mmol (which is equivalent to albumin/creatinine ratio of greater than 30 mg/mmol or approximately 300 mg/g) with very high levels of proteinuria being for a PCR greater than 100 mg/mmol.[13]
Protein dipstick measurements should not be confused with the amount of protein detected on a test for microalbuminuria which denotes values for protein for urine in mg/day versus urine protein dipstick values which denote values for protein in mg/dL. That is, there is a basal level of proteinuria that can occur below 30 mg/day which is considered non-pathology. Values between 30–300 mg/day are termed microalbuminuria which is considered pathologic.[14] Urine protein lab values for microalbumin of >30 mg/day correspond to a detection level within the "trace" to "1+" range of a urine dipstick protein assay. Therefore, positive indication of any protein detected on a urine dipstick assay obviates any need to perform a urine microalbumin test as the upper limit for microalbuminuria has already been exceeded.[15]
Associated conditions[edit]
Proteinuria may be a sign of renal (kidney) damage. Since serum proteins are readily reabsorbed from urine, the presence of excess protein indicates either an insufficiency of absorption or impaired filtration. Diabetics may suffer from damaged nephrons and develop proteinuria. The most common cause of proteinuria is diabetes, and in any person with proteinuria and diabetes, the etiology of the underlying proteinuria should be separated into two categories: diabetic proteinuria versus the field.
With severe proteinuria, general hypoproteinemia can develop which results in diminished oncotic pressure. Symptoms of diminished oncotic pressure may include ascites, edema and hydrothorax.
Conditions with proteinuria as a sign[edit]
Proteinuria may be a feature of the following conditions:[10]
- Nephrotic syndromes (i.e. intrinsic renal failure)
- Pre-eclampsia
- Eclampsia
- Toxic lesions of kidneys
- Amyloidosis
- Collagen vascular diseases (e.g. systemic lupus erythematosus)
- Dehydration
- Glomerular diseases, such as membranous glomerulonephritis, focal segmental glomerulonephritis, minimal change disease (lipoid nephrosis)
- Strenuous exercise
- Stress
- Benign orthostatic (postural) proteinuria
- Focal segmental glomerulosclerosis (FSGS)
- IgA nephropathy (i.e. Berger's disease)
- IgM nephropathy
- Membranoproliferative glomerulonephritis
- Membranous nephropathy
- Minimal change disease
- Sarcoidosis
- Alport's syndrome
- Diabetes mellitus (diabetic nephropathy)
- Drugs (e.g. NSAIDs, nicotine, penicillamine, lithium carbonate, gold and other heavy metals, ACE inhibitors, antibiotics, or opiates (especially heroin)[16]
- Fabry's disease
- Infections (e.g. HIV, syphilis, hepatitis, poststreptococcal infection, urinary schistosomiasis)
- Aminoaciduria
- Fanconi syndrome
- Hypertensive nephrosclerosis
- Interstitial nephritis
- Sickle cell disease
- Hemoglobinuria
- Multiple myeloma
- Myoglobinuria
- Organ rejection: Kidney transplant patients may have gamma-globulins in their urine if the kidneys start to reject.[17]
- Ebola hemorrhagic fever
- Nail patella syndrome
- Familial Mediterranean fever
- HELLP Syndrome
- Systemic lupus erythematosus
- Wegener's granulomatosis
- Rheumatoid arthritis
- Glycogen storage disease type 1[18]
- Goodpasture's syndrome
- Henoch–Schönlein purpura
- A urinary tract infection which has spread to the kidney(s)
- Sjögren's syndrome
- Post-infecious glumerulonephritis
-
This list is incomplete; you can help by expanding it.
Conditions with proteinuria consisting mainly of Bence-Jones proteins as a sign[edit]
- Waldenstrom's macroglobulinemia
- Chronic lymphocytic leukemia
- Amyloidosis
- Malignancies (e.g., lymphoma, other cancers)
- Multiple myeloma
Treatment[edit]
Treating proteinuria mainly needs proper diagnosis of the cause. The most common cause is diabetic nephropathy; in this case, proper glycemic control may slow the progression. Medical management consists of angiotensin converting enzyme (ACE) inhibitors, which are typically first-line therapy for proteinuria. In patients whose proteinuria is not controlled with ACE inhibitors, the addition of an aldosterone antagonist (i.e., spironolactone)[19] or angiotensin receptor blocker (ARB)[20] may further reduce protein loss. Caution must be used if these agents are added to ACE inhibitor therapy due to the risk of hyperkalemia. Proteinuria secondary to autoimmune disease should be treated with steroids or steroid-sparing agent plus the use of ACE inhibitors.
See also[edit]
- Albuminuria
- Microalbuminuria
- List of terms associated with diabetes
- Protein toxicity
- Major urinary proteins
References[edit]
- ^ a b c URINALYSIS Ed Friedlander, M.D., Pathologist - Retrieved 2007-01-20
- ^ foamy urine - Urology - MedHelp Retrieved 2007-01-20
- ^ Pneumaturia at GPnotebook Retrieved 2007-01-20
- ^ Clark, W. F.; Kortas, C.; Suri, R. S.; Moist, L. M.; Salvadori, M.; Weir, M. A.; Garg, A. X.; Wel, I. (2008). "Excessive fluid intake as a novel cause of proteinuria". Canadian Medical Association Journal 178 (2): 173–175. doi:10.1503/cmaj.070792. PMC 2175005. PMID 18195291.
- ^ "Drinking too much water called latest threat to health". Montreal Gazette. January 2008.
- ^ eMedicine > Proteinuria Author: Ronald J Kallen. Coauthor: Watson C Arnold. Updated: Apr 21, 2008
- ^ Ivanyi B, Kemeny E, Szederkenyi E, Marofka F, Szenohradszky P (December 2001). "The value of electron microscopy in the diagnosis of chronic renal allograft rejection". Mod. Pathol. 14 (12): 1200–8. doi:10.1038/modpathol.3880461. PMID 11743041. [1]
- ^ Simerville JA, Maxted WC, and Pahira JJ. Urinalysis: A Comprehensive Review Am Fam Physician. 2005 Mar 15;71(6):1153-1162. Accessed 2 Feb 2012.
- ^ http://medlib.med.utah.edu/WebPath/TUTORIAL/URINE/URINE.html Retrieved 2007-01-20
- ^ a b Simerville JA, Maxted WC, Pahira JJ (2005). "Urinalysis: a comprehensive review". American Family Physician 71 (6): 1153–62. PMID 15791892.
- ^ http://www.answers.com/topic/protein-electrophoresis Retrieved 2007-01-20
- ^ Aliño, Vera Joanne R. and Yang, Kun-Lin (2011). "Using liquid crystals as a readout system in urinary albumin assays.". Analyst 20 (4): 893–900. doi:10.1039/c1an15143f. PMID 21709868.
- ^ "Identification, management and referral of adults with chronic kidney disease: concise guidelines" (PDF). UK Renal Association. 2005-09-27. - see Guideline 4 Confirmation of proteinuria, on page 9
- ^ "Urinary dipstick protein: a poor predictor of absent or severe proteinuria.". PMID 8296815. Am J Obstet Gynecol. 1994 Jan;170(1 Pt 1):137-41.
- ^ "The Urine Dipstick". Georgia Regents University.
- ^ Dettmeyer RB, Preuss J, Wollersen H, Madea B (2005). "Heroin-associated nephropathy". Expert opinion on drug safety 4 (1): 19–28. doi:10.1517/14740338.4.1.19. PMID 15709895.
- ^ Hermann G, Zühlke V, Faul P (1970). "Gamma globulin fragments in urine of kidney transplant patients in relation to rejection crisis". European surgical research. Europäische chirurgische Forschung. Recherches chirurgicales européennes 2 (1): 55–jjjkk63. PMID 4131420.
- ^ Janice Yang Chou, Dietrich Matern, Brian C. Mansfield, Yuan-Tsong Chen (2002). "Type 1 Glycogen Storage Diseases: Disorders of the Glucose-6-Phosphatase Complex". Current Molecular Medicine 2 (2): 121–143. doi:10.2174/1566524024605798. PMID 11949931.
- ^ Mehdi UF, Adams-Huet B, Raskin P, et al. (2009). "Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximum angiotensin-converting enzyme inhibition in diabetic nephropathy.". J Am Soc Nephrol 20 (12): 2641–50. doi:10.1681/ASN.2009070737. PMC 2794224. PMID 19926893.
- ^ Burgess E, Muirhead N, Rene de Cotret P, et al. (2009). "Supramaximal dose of candesartan in proteinuric renal disease.". J Am Soc Nephrol 20 (4): 893–900. doi:10.1681/ASN.2008040416. PMC 2663827. PMID 19211712.
Abnormal clinical and laboratory findings for urine / Urine test / urination disorder (R80–R82, 791)
|
|
Red blood cells |
- Hematuria (Microscopic hematuria)
|
|
White blood cells |
|
|
Proteinuria |
- Albuminuria/Microalbuminuria
- Myoglobinuria
- Hemoglobinuria
|
|
Small molecules |
- Glycosuria
- Ketonuria
- Bilirubinuria
- Hyperuricosuria/Hypouricosuria
- Aminoaciduria
|
|
Pathogens |
|
|
Other |
- Chyluria
- Crystalluria
- osmolality (Isosthenuria, Hypersthenuria)
|
|
|
|
noco/acba/cong/tumr, sysi/epon, urte
|
proc/itvp, drug (G4B), blte, urte
|
|
|
|