出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2012/03/12 15:54:51」(JST)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (July 2008) |
Systematic (IUPAC) name | |
---|---|
(2S,4R)-N-[(1R,2R)-2-hydroxy-1-[(2R,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(methylsulfanyl)oxan-2-yl]propyl]-1-methyl-4-propylpyrrolidine-2-carboxamide | |
Clinical data | |
AHFS/Drugs.com | monograph |
MedlinePlus | a609005 |
Pregnancy cat. | C (US) |
Legal status | ℞-only (US) |
Routes | IM/IV |
Pharmacokinetic data | |
Bioavailability | 100% (IM or IV) |
Half-life | 5.4 ± 1.0 hours after IM or IV administration |
Excretion | renal and biliary |
Identifiers | |
CAS number | 154-21-2 Y |
ATC code | J01FF02 |
PubChem | CID 3000540 |
DrugBank | DB01627 |
ChemSpider | 2272112 Y |
UNII | BOD072YW0F Y |
KEGG | D00223 Y |
ChEMBL | CHEMBL1447 Y |
Chemical data | |
Formula | C18H34N2O6S |
Mol. mass | 406.538 g/mol |
SMILES | eMolecules & PubChem |
InChI
|
|
N (what is this?) (verify) |
Lincomycin is a lincosamide antibiotic that comes from the actinomyces Streptomyces lincolnensis. It has been structurally modified by thionyl chloride to its more commonly known 7-chloro-7-deoxy derivative, clindamycin. It is available with the brand name of Lincobect and Lincocin in Pakistan market.
Contents
|
Although similar in structure, antibacterial spectrum, and in mechanism of action to macrolides, they are also effective against other species as well, i.e., actinomycetes, mycoplasma, and some species of Plasmodium.
However, because of its adverse effects and toxicity, it is rarely used today and reserved for patients allergic to penicillin or where bacteria has developed resistance.
Intramuscular administration of a single dose of 600 mg of Lincomycin produces average peak serum levels of 11.6 micrograms/ml at 60 minutes, and maintains therapeutic levels for 17 to 20 hours, for most susceptible gram-positive organisms. Urinary excretion after this dose ranges from 1.8 to 24.8 percent (mean: 17.3 percent).
A two-hour intravenous infusion of 600 mg of Lincomycin achieves average peak serum levels of 15.9 micrograms/ml and yields therapeutic levels for 14 hours for most susceptible gram-positive organisms. Urinary excretion ranges from 4.9 to 30.3 percent (mean: 13.8 percent).
The biological half-life after IM or IV administration is 5.4 ± 1.0 hours. The serum half-life of lincomycin may be prolonged in patients with severe impairment of renal function, compared to patients with normal renal function. In patients with abnormal hepatic function, serum half-life may be twofold longer than in patients with normal hepatic function. Hemodialysis and peritoneal dialysis are not effective in removing lincomycin from the serum.
Tissue level studies indicate that bile is an important route of excretion. Significant levels have been demonstrated in the majority of body tissues. Although lincomycin appears to diffuse in the cerebrospinal fluid (CSF), levels of lincomycin in the CSF appear inadequate for the treatment of meningitis.
Lincomycin is an antibiotic classified as a constituent of the lincosamide group, which typically feature a 6,8-dideoxy-6-aminooctose lincosamine.[1] In Lincomycin A, this sugar moiety (referred to as methylthiolincosamide) is linked via an amide bond to an amino acid derivative (referred to as propylhygric acid). Lincomycin biosynthesis occurs via a biphasic pathway producing propylproline and methylthiolincosamide followed by condensation of these subunits to N-demethyllincomycin and methyllation by S-adenosylmethionine to produce the antibiotic lincomycin.
In the biosynthesis of the amino acid moiety of lincomycin, tyrosine comprises seven of the nine carbons in the prophylhygric acid, while the remaining two carbons are added in reactions with S-adenosylmethionine.[2][3][4][5] Glucose is converted via glycolysis and the hexose monophosphate pathway to phosphoenolpyruvate and erythrose-4-phosphate, respectively, which are converted via the shikimate pathway to tyrosine and dihydroxyphenylalanine. Although the multistep conversion of dihydroxyphenylalanine to propylproline remains unknown, experiments involving accumulation of 1,2,3,6-tetradehydro-propylproline in mutants lacking a reductase requiring lincomycin cosynthetic factor suggests a biosynthetic scheme that Kuo and coworkers have modified from Brahme et al.[4][5] to accommodate the remaining steps leading to propylproline.[6][7]
The biosynthesis of the methythiolincosamide sugar moiety is still not entirely known, although two different pathways have been predicted.[5][8] One possible pathway proposes the C8 carbon framework of methythiolincosamide originates from the condensation of a pentose (C5) unit, stemming from either the hexose monophosphate or condensation through a transketolase reaction with glyceraldehyde-3-phosphate and sedoheptulose-7-phosphate, and a C3 unit, added through a transaldolase reaction with sedoheptulose-7-phosphate. Once condensed, an octose (C8) unit is formed that can undergo isomerization to octose, dephosphorylation and reduction of the C8 carbon, transamination of 6-ketooctose, and thiomethylation of C1 to finally convert the octose unit to the methylthiolincosamide. A substantially different pathway for the formation of the methythiolincosamide proposes that its biosynthesis involves nucleotide activation followed by a series of modifications of dNTP-activated sugar intermediates. Eight genes, lmb-LMNZPOSQ, have been found to form a "sugar subcluster" which might be involved in this sugar metabolism.[9]
Condensation of both the carboxyl group on the propylproline and the amine group of the methylthiolincosamide via an amide bond is catalyzed by N-Demethyllincomycin-synthetase and leads to the production of N-demethyllincomycin. N-Demethyllincomycin is then methylated by S-adenosylmethionine through N-Demethyllincomycin methyl transferase to form the final lincomycin product.[10]
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「抗菌薬」「リンコマイシン」「LCM」 |
拡張検索 | 「lincomycin hydrochloride」 |
Mechanism of action | Drugs | |
1 | Block cell wall synthesis by inhibition of peptidoglycan cross-linking | penicillin, ampicillin, ticarcillin, piperacillin, imipenem, aztreonam, cephalosporins |
2 | Block peptidoglycan synthesis | bacitracin, vancomycin, cycloserine |
3 | Disrupt bacterial/fungal cell membranes | polymyxins |
4 | Disrupt fungal cell membranes | amphotericin B, nystatin, fluconazole/azoles |
5 | Block nucleotide synthesis | sulfonamides, trimethoprim |
6 | Block DNA topoisomerases | quinolones |
7 | Block mRNA synthesis | rifampin |
8 | Block protein synthesis at 50S ribosomal subunit | chloramphenicol, erythromycin/macrolides, lincomycin, clindamycin, streptogramins (quinupristin, dalfopristin), linezolid |
9 | Block protein synthesis at 30S ribosomal subunit | aminoglycosides, tetracyclines, spectinomycin ATuSi → あつし |
感染臓器・臨床診断 | 原因菌 | 投与期間(抗菌薬) |
髄膜炎 | インフルエンザ菌 | 7-10日 |
肺炎球菌 | 10-14日 | |
髄膜炎菌 | 7-10日 | |
GBS,腸内細菌,リステリア | 21日 | |
中耳炎 | <2 歳 | 10日 |
2 歳≦ | 5-7日 | |
咽頭炎 | A 群連鎖球菌 | 10日(ペニシリン系薬) |
5日(セフェム系薬) | ||
肺炎 | 肺炎球菌,インフルエンザ菌 | 解熱後3-4日 |
黄色ブドウ球菌 | 3-4週間 | |
マイコプラズマ,クラミジア | 10-21日 | |
腎臓、膀胱炎、腎盂腎炎 | 大腸菌,プロテウス,腸球菌 | 3日 |
14日 | ||
骨髄炎 | 黄色ブドウ球菌 | 21日 |
連鎖球菌,インフルエンザ菌 | 14日 |
骨 | 骨髄炎 | 4-6週 | |
耳鼻咽喉 | 中耳炎 | 5-7日 | |
副鼻腔炎 | 5-14日 | ||
A群溶連菌咽頭炎 | 10日 | ||
肺 | 肺炎 | 肺炎球菌 | 7-10日 or 解熱後3日間 |
インフルエンザ菌 | 10-14日 | ||
マイコプラズマ | 14日(7-10日) | ||
レジオネラ | 21日 | ||
肺化膿症 | 28-42日 | ||
心臓 | 感染性心内膜炎 | α連鎖球菌 | 2-4週 |
黄色ブドウ球菌 | 4-6週 | ||
消化管 | 腸炎 | 赤痢菌 | 3日 |
チフス | 14日(5-7日) | ||
パラチフス | |||
腹膜炎 | 特発性 | 5日 | |
二次性 | 10-14日 | ||
胆肝膵 | 肝膿瘍 | 細菌性 | 4-8週 |
アメーバ性 | 10日 | ||
尿路 | 膀胱炎 | 3日 | |
急性腎盂腎炎 | 14日(7-10日) | ||
急性腎盂腎炎・再発 | 6週 | ||
慢性前立腺炎 | 1-3ヶ月 | ||
髄腔 | 髄膜炎 | インフルエンザ菌 | 7-10日 |
髄膜炎菌 | |||
肺炎球菌 | 10-14日 | ||
リステリア | 21日 | ||
敗血症 | 敗血症 | コアグラーゼ陰性ブドウ球菌 | 5-7日 |
黄色ブドウ球菌 | 28日(14日) | ||
グラム陰性桿菌 | 14日(7-14日) | ||
カンジダ | 血液培養陰性化後, 14日 |
.