出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/09/22 22:03:54」(JST)
Polymyxins are antibiotics,[1] with a general structure consisting of a cyclic peptide with a long hydrophobic tail. They disrupt the structure of the bacterial cell membrane by interacting with its phospholipids. They are produced by nonribosomal peptide synthetase systems in Gram-positive bacteria such as Paenibacillus polymyxa[2] and are selectively toxic for Gram-negative bacteria due to their specificity for the lipopolysaccharide molecule that exists within many Gram-negative outer membranes.
Polymyxins B and E (also known as colistin) are used in the treatment of Gram-negative bacterial infections. The global problem of advancing antimicrobial resistance has led to a renewed interest in their use recently.[3]
Polymyxin M is also known as "mattacin".[4]
Polymyxin antibiotics are relatively neurotoxic and nephrotoxic,[5] so are usually used only as a last resort if modern antibiotics are ineffective or are contraindicated. Typical uses are for infections caused by strains of multiple drug-resistant Pseudomonas aeruginosa or carbapenemase-producing Enterobacteriaceae.
Polymyxins B are not absorbed from the gastrointestinal tract, so another route of administration must be chosen, e.g., parenteral (often intravenously) or by inhalation (unless perhaps the targets are bacteria in the gastrointestinal tract). They are also used externally as a cream or drops to treat otitis externa (swimmers ear).[6] Polymixin B is a component of triple antibiotic ointment.
Polymyxins have less effect on Gram-positive organisms, and are sometimes combined with other agents (as with trimethoprim/polymyxin) to broaden the effective spectrum.
After binding to lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria, polymyxins disrupt both the outer and inner membranes. The hydrophobic tail is important in causing membrane damage, suggesting a detergent-like mode of action.[7]
Removal of the hydrophobic tail of polymyxin B yields polymyxin nonapeptide, which still binds to LPS, but no longer kills the bacterial cell. However, it still detectably increases the permeability of the bacterial cell wall to other antibiotics, indicating it still causes some degree of membrane disorganization.[8]
Gram-negative bacteria can develop resistance to polymyxins through various modifications of the LPS structure that inhibit the binding of polymyxins to LPS.[9]
Antibiotic resistance to this drug has been increasing, especially in southern China. Recently the gene mcr-1, which confers the antibiotic resistance, has been isolated from Enterobacteriaceae bacteria plasmids which will increase the likelihood of its spread globally.[10][11]
Polymyxins are used to neutralize or absorb LPS, which contaminates samples intended for use in, e.g., immunological experiments. Minimization of LPS contamination can be important because LPS can evoke strong reactions from immune cells and, therefore, distort experimental results.
By increasing permeability of the bacterial membrane system, polymyxin is also used in clinical work to increase release of secreted toxins, such as Shiga toxin from Escherichia coli.[12]
Antibacterials: cell envelope antibiotics (J01C-J01D)
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Intracellular |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Glycopeptide |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
β-lactams/ (inhibit PBP |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「抗菌薬」 |
Mechanism of action | Drugs | |
1 | Block cell wall synthesis by inhibition of peptidoglycan cross-linking | penicillin, ampicillin, ticarcillin, piperacillin, imipenem, aztreonam, cephalosporins |
2 | Block peptidoglycan synthesis | bacitracin, vancomycin, cycloserine |
3 | Disrupt bacterial/fungal cell membranes | polymyxins |
4 | Disrupt fungal cell membranes | amphotericin B, nystatin, fluconazole/azoles |
5 | Block nucleotide synthesis | sulfonamides, trimethoprim |
6 | Block DNA topoisomerases | quinolones |
7 | Block mRNA synthesis | rifampin |
8 | Block protein synthesis at 50S ribosomal subunit | chloramphenicol, erythromycin/macrolides, lincomycin, clindamycin, streptogramins (quinupristin, dalfopristin), linezolid |
9 | Block protein synthesis at 30S ribosomal subunit | aminoglycosides, tetracyclines, spectinomycin ATuSi → あつし |
感染臓器・臨床診断 | 原因菌 | 投与期間(抗菌薬) |
髄膜炎 | インフルエンザ菌 | 7-10日 |
肺炎球菌 | 10-14日 | |
髄膜炎菌 | 7-10日 | |
GBS,腸内細菌,リステリア | 21日 | |
中耳炎 | <2 歳 | 10日 |
2 歳≦ | 5-7日 | |
咽頭炎 | A 群連鎖球菌 | 10日(ペニシリン系薬) |
5日(セフェム系薬) | ||
肺炎 | 肺炎球菌,インフルエンザ菌 | 解熱後3-4日 |
黄色ブドウ球菌 | 3-4週間 | |
マイコプラズマ,クラミジア | 10-21日 | |
腎臓、膀胱炎、腎盂腎炎 | 大腸菌,プロテウス,腸球菌 | 3日 |
14日 | ||
骨髄炎 | 黄色ブドウ球菌 | 21日 |
連鎖球菌,インフルエンザ菌 | 14日 |
骨 | 骨髄炎 | 4-6週 | |
耳鼻咽喉 | 中耳炎 | 5-7日 | |
副鼻腔炎 | 5-14日 | ||
A群溶連菌咽頭炎 | 10日 | ||
肺 | 肺炎 | 肺炎球菌 | 7-10日 or 解熱後3日間 |
インフルエンザ菌 | 10-14日 | ||
マイコプラズマ | 14日(7-10日) | ||
レジオネラ | 21日 | ||
肺化膿症 | 28-42日 | ||
心臓 | 感染性心内膜炎 | α連鎖球菌 | 2-4週 |
黄色ブドウ球菌 | 4-6週 | ||
消化管 | 腸炎 | 赤痢菌 | 3日 |
チフス | 14日(5-7日) | ||
パラチフス | |||
腹膜炎 | 特発性 | 5日 | |
二次性 | 10-14日 | ||
胆肝膵 | 肝膿瘍 | 細菌性 | 4-8週 |
アメーバ性 | 10日 | ||
尿路 | 膀胱炎 | 3日 | |
急性腎盂腎炎 | 14日(7-10日) | ||
急性腎盂腎炎・再発 | 6週 | ||
慢性前立腺炎 | 1-3ヶ月 | ||
髄腔 | 髄膜炎 | インフルエンザ菌 | 7-10日 |
髄膜炎菌 | |||
肺炎球菌 | 10-14日 | ||
リステリア | 21日 | ||
敗血症 | 敗血症 | コアグラーゼ陰性ブドウ球菌 | 5-7日 |
黄色ブドウ球菌 | 28日(14日) | ||
グラム陰性桿菌 | 14日(7-14日) | ||
カンジダ | 血液培養陰性化後, 14日 |
.