出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/02/14 18:13:16」(JST)
An oxo-acid is an acid that contains oxygen. To be more specific, it is a compound that contains hydrogen, oxygen, and at least one other element, with at least one hydrogen atom bound to oxygen that can dissociate to produce the H+ cation and the anion of the acid.[1]
Generally, oxy-acids are simply polyatomic anions attached to a positively polarized hydrogen, which can be split off as a cation(ion).
Under Lavoisier's original theory, all acids contained oxygen, which was named from the Greek ὀξύς (oxys) (acid, sharp) and the root –γενής (–genes) (engender). It was later discovered that some acids, notably hydrochloric acid, did not contain oxygen and so acids were divided into oxoacids and these new hydracids.
All oxy-acids have the acidic hydrogen bound to an oxygen atom, so bond strength (length) is not a factor, as it is with binary nonmetal hydrides. Rather, the electronegativity of the central atom (E) and the number of O atoms determine oxy-acid acidity. With the same "central atom" E to which the O is attached, acid strength increases as the number of oxygen attached to E increases. With the same number of oxygens around E, acid strength increases with the electronegativity of E.
Imidic acids are created by replacing =O with =NR in an oxoacid.[2]
An oxy-acid molecule contains the structure M-O-H, where other atoms or atom groups can be connected to the central atom M. In a solution, such a molecule can be dissociated to ions in two distinct ways:
If the central atom M is strongly electronegative, then it attracts strongly the electrons of the oxygen atom. In that case, the bond between the oxygen and hydrogen atom is weak, and the compound ionizes easily in the way of the former of the two chemical equations above. In this case, the compound MOH is thus an acid, because it releases a proton, that is, a hydrogen ion. For example, nitrogen, sulfur and chlorine are strongly electronegative elements, and therefore nitric acid, sulfuric acid, and perchloric acid, are strong acids.
If, however, the electronegativity of M is weak, then the compound is dissociated to ions according to the latter chemical equation, and MOH is an alkaline hydroxide. Examples of such compounds are sodium hydroxide NaOH and calcium hydroxide Ca(OH)2.[3] If the electronegativity of M is somewhere in between, the compound can even be amphoteric, and in that case, it can dissociate to ions in both ways, in the former case when reacting with bases, and in the latter case when reacting with acids.[3]
Inorganic oxy-acids typically have a chemical formula of type HmXOn, where X is some atom functioning as a central atom, whereas parameters m and n depend on the oxidation state of the element X. In most cases, the element X is a nonmetal, but even some metals, for example chromium and manganese, can form oxy-acids when occurring at their highest oxidation state.[3]
When oxy-acids are heated, many of them dissociate to water and the anhydride of the acid. In most cases, such anhydrides are oxides of nonmetals. For example, carbon dioxide, CO2, is the anhydride of carbonic acid, H2CO3, and sulfur trioxide, SO3, is the anhydride of sulfuric acid, H2SO4. These anhydrides react quickly with water and form those oxy-acids again.[4]
Many organic acids, like carboxylic acids and phenols, are oxy-acids.[3] Their molecular structure, however, is much more cumbersome than that of inorganic oxy-acids.
Most acids are oxoacids.[3] Indeed, in the 18th century, Lavoisier assumed that all acids contain oxygen and that oxygen causes their acidity. Because of this, he gave to this element its name, oxygenium, derived from Greek and meaning sharp-maker, which is still, in a more or less modified form, used in most languages.[5] Later, however, Humphry Davy showed that the so-called muriatic acid did not contain oxygen, despite its being a strong acid; instead, it is a solution of hydrogen chloride, HCl.[6] Such acids which do not contain oxygen are nowadays known as hydracids.
Many inorganic oxoacids are traditionally called with names ending with the word acid and which also contain, in a somewhat modified form, the name of the element they contain in addition to hydrogen and oxygen. Well-known examples of such acids are sulfuric acid, nitric acid and phosphoric acid.
This practice is fully well-established, and even IUPAC has accepted such names. In light of the current chemical nomenclature, this practice is, however, very exceptional, because systematic names of all other compounds are formed only according to what elements they contain and what is their molecular structure, not according to what other properties (for example, acidity) they have.[7]
IUPAC, however, does not recommend to call future compounds not yet discovered with a name ending with the word acid.[7] Indeed, acids can even be called with names formed by adding the word hydrogen in front of the corresponding anion; for example, sulfuric acid could just as well be called hydrogen sulfate (or dihydrogen sulfate).[8] In fact, the fully systematic name of sulfuric acid, according to IUPAC's rules, would be dihydroxidodioxidosulfur and that of the sulfate ion, tetraoxidosulfate(2-),[9] Such names, however, are almost never used.
However, the same element can form more than one acid when compounded with hydrogen and oxygen. In such cases, the English practice to distinguish such acids is to use the suffix -ic in the name of the element in the name of the acid containing more oxygen atoms, and the suffix -ous in the name of the element in the name of the acid containing fewe oxygen atoms. Thus, for example, sulfuric acid is H2SO4, and sulfurous acid, H2SO3. Analogously, nitric acid is HNO3, and nitrous acid, HNO2. If there are more than two oxoacids having the same element as the central atom, then, in some cases, acids are distinguished by adding the prefix per- or hypo- to their names. The prefix per-, however, is used only when the central atom is a halogen or a group 7 element.[8] For example, chlorine has the four following oxoacids:
The suffix -ite occurs in names of anions and salts derived from acids whose names end to the suffix -ous. On the other hand, the suffix -ate occurs in names of anions and salts derived from acids whose names end to the suffix -ic. Prefixes hypo- and per- occur even in name of anions and salts; for example the ion ClO4− is called perchlorate.[8]
In a few cases, even prefixes ortho- and para- occur in names of some oxoacids and their derivative anions. In such cases, the para acid is what can be thought as remaining of the ortho acid if a water molecule is separated from the ortho acid molecule. For example, phosphoric acid,H3PO4, has sometimes even be called as orthophosphoric acid, in order to distinguish it from metaphosphoric acid, HPO3.[8] However, according to IUPAC' s current rules, the prefix ortho- should only be used in names of orthotelluric acid and orthoperiodic acid, and their corresponding anions and salts.[10]
In the following table, the formula and the name of the anion refer to what remains of the acid when it cedes all hydrogen atoms as protons. Many of these acids, however, are polyprotic, and in such cases, there exists also one or more intermediate anions. In name of such anions, the prefix hydro-, is added if needed, with some numeral prefixes. For example, SO42− is the sulfate anion, and HSO4−, the hydrosulfate anion. In a similar way, PO43− is the phosphate, H2PO42−, the dihydrophosphate, and HPO4−, the hydrophosphate ion.
Element group | Element (central atom) | Formula of the acid | Name of the acid[8][9] | Formula of the corresponding anion | Name of the anion |
---|---|---|---|---|---|
6 | Chromium | H2CrO4 | Chromic acid | CrO42− | Chromate |
H2Cr2O7 | Dichromic acid | Cr2O72− | Dichromate | ||
7 | Manganese | HMnO4 | Permanganic acid | MnO4 | Permanganate |
HMnO3 | Manganic acid | MnO3 | Manganate | ||
Technetium | HTcO4 | Pertechnetic acid | TcO4 | Pertechnetate | |
HTcO3 | Technetic acid | TcO3 | Technetate | ||
Rhenium | HReO4 | Perrhenic acid | ReO4 | Perrhenate | |
HReO3 | Rhenic acid | ReO3 | Rhenate | ||
13 | Boron | H3BO3 | Boric acid (formerly orthoboric acid)[10] |
BO33− | Borate (formerly orthoborate) |
(HBO2)n | Metaboric acid | BO2− | Metaborate | ||
14 | Carbon | H2CO3 | Carbonic acid | CO32− | Carbonate |
Silicon | H4SiO4 | Silicic acid (formerly. orthosilicic acid)[10] |
SiO44− | Silicate (formerly orthosilicate) | |
H2SiO3 | Metasilicic acid | SiO32− | Metasilicate | ||
14, 15 | Carbon, nitrogen | HOCN | Cyanic acid | OCN− | Cyanate |
HNCO | Isocyanic acid | NCO− | Isocyanate | ||
HONC | Fulminic acid | ONC− | Fulminate | ||
15 | Nitrogen | HNO3 | Nitric acid | NO3− | Nitrate |
HNO2 | Nitrous acid | NO2− | Nitrite | ||
HNO4 | Peroxynitric acid | NO4− | Peroxynitrate | ||
HOONO | Peroxynitrous acid | OONO− | Peroxynitrite | ||
H2NO2 | Nitroxylic acid | NO22− | Nitroxylate | ||
H2N2O2 | Hyponitrous acid | N2O22− | Hyponitrite | ||
Phosphorus | H3PO4 | Phosphoric acid (formerly even orthophosphoric acid)[10] |
PO43− | Phosphate (orthophosphate) |
|
HPO3 | Metaphosphoric acid | PO3− | Metaphosphate | ||
H4P2O7 | Pyrophosphoric acid (diphosphoric acid) |
P2O74− | Pyrophosphate (diphosphate) |
||
H3PO5 | Peroxomonophosphoric acid | PO33− | Peroxomonophosphate | ||
(HO)2OP-PO(OH)2 | Hypophosphoric acid (diphosphoric(IV) acid) |
O2OP-POO24− | Hypophosphate (diphosphate(IV)) |
||
(HO)2P-O-PO(OH)2 | Diphosphoric(III,V) acid | O2-P-O-POO22− | Diphosphate(III,V) | ||
H2PHO3 | Phosphonic acid | PHO32− | Phosphonate | ||
H2P2H2O5 | Diphosphonic acid | P2H2O35− | Diphosphonate | ||
HPH2O2 | Phosphinic acid | PH2O2− | Phosphinate | ||
Arsenic | H3AsO4 | Arsenic acid | AsO43− | Arsenate | |
H3AsO3 | Arsenous acid | AsO33− | Arsenite | ||
16 | Sulfur | H2SO4 | Sulfuric acid | SO42− | Sulfate |
H2SO3 | Sulfurous acid | SO32− | Sulfite | ||
H2S2O7 | Disulfuric acid | S2O72− | Disulfate | ||
H2SO5 | Peroxomonosulfuric acid | SO52− | Peroxomonosulfate | ||
H2S2O8 | Peroxodisulfuric acid | S2O82− | Peroxodisulfate | ||
H2S2O3 | Thiosulfuric acid | S2O32− | Thiosulfate | ||
H2S2O6 | Dithionic acid | S2O62− | Dithionate | ||
H2S2O5 | Disulfurous acid | S2O52− | Disulfite | ||
H2S2O2 | Thiosulfurous acid | S2O22− | Thiosulfite | ||
H2S2O4 | Dithionous acid | S2O42− | Dithionite | ||
H2SO2 | Sulfoxylic acid | SO22− | Sulfoxylate | ||
H2SxO5 | Polythionic acids (x |
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「オキソ酸」「ケト酸」「oxo acid」 |
。]] オキソ酸(オキソさん、Oxoacid)とは、ある原子にヒドロキシル基 (-OH) とオキソ基 (=O) が結合しており、且つそのヒドロキシル基が酸性プロトンを与える化合物のことを指す<ref>IUPAC Gold Book - oxoacids</ref>。ただし、無機化学命名法IUPAC1990年勧告のオキソ酸の定義では、先述した化合物の他にアクア酸(aqua acid)<ref>中心金属イオンに配位した水分子に酸性プロトンが存在する酸。例:ヘキサアクア鉄(III)イオン</ref>、ヒドロキソ酸(hydroxoacid)<ref>隣接するオキソ基が存在しないヒドロキシル基に酸性プロトンが存在する酸。例:オルトケイ酸 (H4SiO4)</ref>もオキソ酸に含まれることになる。無機化合物のオキソ酸の例としては硫酸や硝酸、リン酸などが挙げられる。有機化合物で最も重要なオキソ酸はカルボン酸である。酸性の強弱は化合物の種類によりさまざまなものがある。一般に、オキソ酸は多原子イオンと水素イオンを与える。
オキソ酸が脱水縮合することで、ポリオキソ酸が生成する。例えば、リン酸では二リン酸、三リン酸である。酸無水物も同様に、オキソ酸の脱水縮合生成物にあたる。遷移金属元素のオキソ酸は金属オキソ酸(ポリ酸)と呼ぶ。
単核オキソ酸の酸性度の強さを推定する2つの経験則としてポーリングの規則(Pauling's rules)が知られている。
ただし、この規則に従わないオキソ酸も存在する。例えば炭酸の推定値は3であるが実測値は6.4である。これは水溶液中に溶けている二酸化炭素が僅かしか炭酸にならないためである。このことを考慮に入れるとpKa値は規則通り約3.6となる。また、亜硫酸も規則に従わない。これは溶液中に亜硫酸分子は検出されず、さらにSO2が複雑な平衡を持っているからである。
テンプレート:脚注ヘルプ <references/>
ja
ketoacid : 約 7,790 件 keto acid : 約 6,040 件
en
ketoacid : 約 280,000 件 keto acid : 約 196,000 件
ja
oxoacid : 約 7,960 件 oxo acid : 100 件
en
oxoacid : 約 161,000 件 oxo acid : 約 71,200 件
ケトンのカルボニル基COとカルボキシル基のCOOHを含む有機化合物
ケト酸(ケトさん、Keto acid)は、ケトン基とカルボキシル基を含む有機酸である。
ケト酸のタイプには次のようなものがある。
.