出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2017/04/24 22:38:25」(JST)
略称 | IUPAC |
---|---|
標語 | 世界規模での科学の振興 |
設立年 | 1919 |
種類 | 国際化学標準化組織 |
本部 | スイスチューリッヒ及びアメリカ合衆国ノースカロライナ州 |
貢献地域 | 世界 |
公用語 | 英語 |
President | Mark Cesa[1] |
ウェブサイト | www.iupac.org |
国際純正・応用化学連合(こくさいじゅんせい・おうようかがくれんごう、英: International Union of Pure and Applied Chemistry、IUPAC)は、各国の化学者を代表する国内組織の連合である。国際科学組織の参加組織である[2]。IUPACの事務局はノースカロライナ大学チャペルヒル校・デューク大学・ノースカロライナ州立大学が牽引するリサーチ・トライアングル・パーク(アメリカ合衆国ノースカロライナ州)にある。また、本部は、スイスのチューリッヒにある。[3]。2012年8月1日現在の事務局長は、ジョン・ピーターソンが務めている[4]。
IUPACは、化学の前進のための国際応用化学会議を1919年に引き継いで設立された。会員となる各国の組織は、各国の化学会や科学アカデミー、または化学者を代表するその他の組織である。54カ国の組織と3つの関連組織が参加している[2]。IUPACの内部組織である命名法委員会は、元素や化合物の命名の標準(IUPAC命名法)として世界的な権威として認知されている。創設以来、IUPACは、各々の責任を持つ多くの異なる委員会によって運営されてきた[5]。これらの委員会は、命名法の標準化を含む多くのプロジェクトを走らせ[6]、化学を国際化する道を探し[7]、また出版活動を行っている[8][9][10]。
IUPACは、化学やその他の分野での命名法の標準化で知られているが、IUPACは、化学、生物学、物理学を含む多くの分野の出版物を発行している[11]。これらの分野でIUPACが行った重要な仕事には、核酸塩基配列コード名の標準化や、環境科学者や化学者、物理学物のための本の出版、科学教育の改善の主導等である[11][12]。また、最古の委員会の1つである原子量及び同位体存在度委員会による元素の原子量の標準化によっても知られている。
化学における国際的な標準の必要性は、1860年にドイツの化学者アウグスト・ケクレが主宰する委員会により初めて提唱された。この委員会は、有機化合物に対する国際的な命名システムを作るための初めての国際会議だった[11]。この会議で検討されたアイデアは、有機化合物のIUPAC命名法の元になった[11]。IUPACは、この会議を引き継いで設立され、最も重要な、歴史的な化学者の国際連携の1つとなった[11]。この時から、IUPACは、公式な有機化合物命名法を発展、維持する責任を持つ公式機関となった[13]。IUPACは、そのようなものとして1919年に設立された[14]。この初期のIUPACから除外された有力な国の1つは、ドイツである。ドイツの除外は、第一次世界大戦後の連合国からのドイツへの嫌悪感のためだった[15]。ドイツは最終的に1929年にIUPACに加盟した。しかし、ナチス・ドイツは、第二次世界大戦中にIUPACから除名された。
第二次世界大戦中、IUPACは連合国側についたが、戦争自体にはほとんど巻き込まれなかった。戦後、西ドイツはIUPACへの復帰を許された[15]。第二次世界大戦以降、IUPACは、妨害なしに科学の命名や方法を標準化することに注力している。
IUPACは、各々異なる責任を持つ複数の委員会により運営されている。委員会は、以下の通りである:CHEMRAWN(世界のニーズへの化学研究の適用)委員会、化学教育委員会、化学と産業委員会、出版及び電子出版委員会、評価委員会、執行委員会、財務委員会、術語・命名法・記号のための部会間委員会、プロジェクト委員会、諮問委員会[5]。各委員会の委員は、異なる国の組織から選出される[16]。
IUPACから、化学に関する規定などを定めたルールブックが発行されている。これらの書籍はまとめて、「カラーブック」と呼ばれている[17]。
愛称 | 正式名称 | 説明 |
---|---|---|
ゴールドブック | Compendium of Chemical Terminology 化学用語集 | 化学者Victor Goldによって編集された化学用語辞典 |
グリーンブック | Quantities, Units and Symbols in Physical Chemistry 物理化学における量、単位、および、記号 | 物理化学で使われる多数の量の名前・記号・単位・定義と使い方などを採録[18]。 |
オレンジブック | Compendium of Analytical Nomenclature 分析化学用語集 | 分析化学の用語についての規定などを採録 |
パープルブック | Compendium of Macromolecular Terminology and Nomenclature 高分子化学用語集 | 高分子化学についての規定などを採録 |
レッドブック | Nomenclature of Inorganic Chemistry 無機化学用語集 | 無機物の命名規則についての規定を採録 |
ブルーブック | Nomenclature of Organic Chemistry 有機化学用語集 | 有機物の命名規則についての規定を採録 |
シルバーブック | Compendium of Terminology and Nomenclature of Properties in Clinical Laboratory Sciences 臨床化学用語集 |
臨床化学についての規定を採録 |
ホワイトブック | Biochemical Nomenclature and Related Documents 生化学用語と関係文書 | 生化学についての規定を採録 |
そのほかにも、Pure and Applied Chemistry(英語版)という公式ジャーナルが、Walter de Gruyter出版から毎月発刊されている。
前述のように、IUPAC委員会は、有機化合物や無機化合物の公式な命名について、長い歴史を持つ。IUPAC命名法は、全ての化合物を一式の規則に基づいて一意に命名するために発展してきた。最初の版は国際応用化学会議からの情報に基づくもので[19]、1900年に出版されたA Guide to IUPAC Nomenclature of Organic Compoundsである。
有機化合物の命名は、置換基、炭素鎖、接尾辞の3つの部分からなる[13]。置換基は、主要な炭素鎖に結合する官能基であり、主要な炭素鎖は、最も長い連続する鎖である。接尾辞は、分子の種類を示す。例えば、-アンという接尾辞は、ヘキサンのように、単結合の炭素鎖であることを表す[20]。
シクロヘキサノールを例に取り、IUPAC命名法の構造を示す。
2つの接尾辞が融合して「アノール」となっており、単結合の炭素鎖にアルコール基が結合していることを示している[13][21][22]。
基本的なIUPAC無機化合物命名法は、カチオンとアニオンの2つの部分から成り立っている。カチオンは正電荷を帯びたイオン、アニオンは負電荷を帯びたイオンの名前である[13]。
無機化合物のIUPAC命名法の例は、塩素酸カリウム(Potassium chlorate)である。
IUPACは、アミノ酸や核酸塩基を同定するためのコードを与えるシステムも持っている。IUPACは、アミノ酸の長い配列を表すコードのシステムを必要とした。これにより、配列を比較してホモログを探索することが可能となった[23]。この配列は、1文字または3文字のコードから構成される。
このコードにより、タンパク質を構成するアミノ酸配列をより簡単に短く記載できるようになった。核酸塩基はプリン(アデニンおよびグアニン)とピリミジン(シトシンおよびチミンまたはウラシル)からなり、これらがDNAやRNAを構成する。このコードを用いることにより、生物のゲノムをより容易に表すことができる[24]。
核酸コード | 意味 | 記号 |
---|---|---|
A | A | アデニン(Adenine) |
C | C | シトシン(Cytosine) |
G | G | グアニン(Guanine) |
T | T | チミン(Thymine) |
U | U | ウラシル(Uracil) |
R | AまたはG | プリン(puRine) |
Y | C, TまたはU | ピリミジン(pYrimidines) |
K | G, TまたはU | ケトン(Ketones) |
M | AまたはC | アミノ(aMino groups) |
S | CまたはG | 強相互作用(Strong interaction) |
W | A, TまたはU | 弱相互作用(Weak interaction) |
B | A以外 (すなわちC, G, TまたはU) | Aの後のB |
D | C以外 (すなわちA, G, TまたはU) | Cの後のD |
H | G以外 (すなわちA, C, TまたはU) | Gの後のH |
V | T、U以外 (すなわちA, CまたはG) | Uの後のV |
N | A C G T U | 核酸 (Nucleic acid) |
X | マスク | |
- | 中間長ギャップ |
アミノ酸のコード(24アミノ酸と3つの特殊コード)は、以下のとおりである。
アミノ酸コード | 意味 |
---|---|
A | アラニン |
B | アスパラギン酸またはアスパラギン |
C | システイン |
D | アスパラギン酸 |
E | グルタミン酸 |
F | フェニルアラニン |
G | グリシン |
H | ヒスチジン |
I | イソロイシン |
J | ロイシンまたはイソロイシン |
K | リシン |
L | ロイシン |
M | メチオニン |
N | アスパラギン |
O | ピロリシン |
P | プロリン |
Q | グルタミン |
R | アルギニン |
S | セリン |
T | スレオニン |
U | セレノシステイン |
V | バリン |
W | トリプトファン |
Y | チロシン |
Z | グルタミン酸またはグルタミン |
X | 全て |
* | 停止 |
- | 中間長ギャップ |
2011年に行われた世界化学年は、IUPACとUNESCOが中心となって進めた[25][26]。もともとはイタリアのトリノで行われたIUPACの総会で提案され[27]、2008年のUNESCOの会議で承認された[28]。世界化学年の主要な目的は、公衆の化学に対する理解を深め、化学の世界に対する興味を増すことであった。また若者を化学に関与させることや、化学が人々の生活を改善してきたことを称えることも目的の1つであった[12]。
|
Logo
|
|
Abbreviation | IUPAC |
---|---|
Motto | Advancing Chemistry Worldwide |
Formation | 1919; 98 years ago (1919) |
Type | International chemistry standards organization |
Headquarters | Registered in Zürich, Switzerland, secretariat in North Carolina, United States |
Region served
|
Worldwide |
Official language
|
English |
President
|
Natalia Tarasova[1] |
Website | iupac.org |
The International Union of Pure and Applied Chemistry (IUPAC) /ˈaɪjuːpæk/ or /ˈjuːpæk/ is an international federation of National Adhering Organizations that represents chemists in individual countries. It is a member of the International Council for Science (ICSU).[2] IUPAC is registered in Zürich, Switzerland, and the administrative office, known as the "IUPAC Secretariat", is in Research Triangle Park, North Carolina, United States. This administrative office is headed by IUPAC's executive director,[3] currently Lynn Soby.[4]
IUPAC was established in 1919 as the successor of the International Congress of Applied Chemistry for the advancement of chemistry. Its members, the National Adhering Organizations, can be national chemistry societies, national academies of sciences, or other bodies representing chemists. There are fifty-four National Adhering Organizations and three Associate National Adhering Organizations.[2] IUPAC's Inter-divisional Committee on Nomenclature and Symbols (IUPAC nomenclature) is the recognized world authority in developing standards for the naming of the chemical elements and compounds. Since its creation, IUPAC has been run by many different committees with different responsibilities.[5] These committees run different projects which include standardizing nomenclature,[6] finding ways to bring chemistry to the world,[7] and publishing works.[8][9][10]
IUPAC is best known for its works standardizing nomenclature in chemistry and other fields of science, but IUPAC has publications in many fields including chemistry, biology and physics.[11] Some important work IUPAC has done in these fields includes standardizing nucleotide base sequence code names; publishing books for environmental scientists, chemists, and physicists; and improving education in science.[11][12] IUPAC is also known for standardizing the atomic weights of the elements through one of its oldest standing committees, the Commission on Isotopic Abundances and Atomic Weights (CIAAW).
The need for an international standard for chemistry was first addressed in 1860 by a committee headed by German scientist Friedrich August Kekulé von Stradonitz. This committee was the first international conference to create an international naming system for organic compounds.[11] The ideas that were formulated in that conference evolved into the official IUPAC nomenclature of organic chemistry.[11] IUPAC stands as a legacy of this meeting, making it one of the most important historical international collaborations of chemistry societies.[11] Since this time, IUPAC has been the official organization held with the responsibility of updating and maintaining official organic nomenclature.[13] IUPAC as such was established in 1919.[14] One notable country excluded from this early IUPAC is Germany. Germany's exclusion was a result of prejudice towards Germans by the Allied powers after World War I.[15] Germany was finally admitted into IUPAC during 1929. However, Nazi Germany was removed from IUPAC during World War II.
During World War II, IUPAC was affiliated with the Allied powers, but had little involvement during the war effort itself. After the war, East and West Germany were eventually readmitted to IUPAC.[15][16] Since World War II, IUPAC has been focused on standardizing nomenclature and methods in science without interruption.
In 2016, IUPAC denounced the use of chlorine as a chemical weapon. The organization pointed out their concerns in a letter to Ahmet Üzümcü, the director of the Organisation for the Prohibition of Chemical Weapons (OPCW), in regards to the practice of utilizing chlorine for weapon usage in Syria among other locations. The letter stated, "Our organizations deplore the use of chlorine in this manner. The indiscriminate attacks, possibly carried out by a member state of the Chemical Weapons Convention (CWC), is of concern to chemical scientists and engineers around the globe and we stand ready to support your mission of implementing the CWC." According to the CWC, "the use, stockpiling, distribution, development or storage of any chemical weapons is forbidden by any of the 192 state party signatories."[17]
IUPAC is governed by several committees that all have different responsibilities. The committees are as follows: Bureau, CHEMRAWN (Chem Research Applied to World Needs) Committee, Committee on Chemistry Education, Committee on Chemistry and Industry, Committee on Printed and Electronic Publications, Evaluation Committee, Executive Committee, Finance Committee, Interdivisional Committee on Terminology, Nomenclature and Symbols, Project Committee, and Pure and Applied Chemistry Editorial Advisory Board.[5] Each committee is made up of members of different National Adhering Organizations from different countries.[2]
The steering committee hierarchy for IUPAC is as follows:[18]
Committee name (abbreviation) | Responsibilities |
---|---|
Bureau |
|
Physical and Biophysical Chemistry Division (Division I) |
|
Inorganic Chemistry Division (Division II) |
|
Organic and Biomolecular Chemistry Division (Division III) |
|
Polymer Division (Division IV) |
|
Analytical Chemistry Division (Division V) |
|
Chemistry and the Environment Division (Division VI) |
|
Chemistry and Human Health Division (Division VII) |
|
Chemical Nomenclature and Structure Representation Division (Division VIII) |
|
CHEMRAWN Committee (Chem Research Applied to World Needs) |
|
Committee on Chemistry Education (CCE) |
|
Committee on Chemistry and Industry (COCI) |
|
Committee on Electronic and Printed Publications (CPEP) |
|
Evaluation Committee (EvC) |
|
Executive Committee (EC) |
Current officers of the Executive Committee:
|
Finance Committee (FC) |
|
Interdivisional Committee on Terminology (ICTNS) |
|
Project Committee (PC) |
|
Pure and Applied Chemistry Editorial Advisory Board (PAC-EAB) |
|
IUPAC committee has a long history of officially naming organic and inorganic compounds. IUPAC nomenclature is developed so that any compound can be named under one set of standardized rules to avoid duplicate names. The first publication, which is information from the International Congress of Applied Chemistry,[26] on IUPAC nomenclature of organic compounds, can be found from the early 20th century in A Guide to IUPAC Nomenclature of Organic Compounds (1900).
IUPAC organic nomenclature has three basic parts: the substituents, carbon chain length and chemical ending.[13] The substituents are any functional groups attached to the main carbon chain. The main carbon chain is the longest possible continuous chain. The chemical ending denotes what type of molecule it is. For example, the ending ane denotes a single bonded carbon chain, as in "hexane" (C
6H
14).[27]
Another example of IUPAC organic nomenclature is cyclohexanol:
Basic IUPAC inorganic nomenclature has two main parts: the cation and the anion. The cation is the name for the positively charged ion and the anion is the name for the negatively charged ion.[13]
An example of IUPAC nomenclature of inorganic chemistry is potassium chlorate (KClO3):
IUPAC also has a system for giving codes to identify amino acids and nucleotide bases. IUPAC needed a coding system that represented long sequences of amino acids. This would allow for these sequences to be compared to try to find homologies.[29] These codes can consist of either a one letter code or a three letter code.
These codes make it easier and shorter to write down the amino acid sequences that make up proteins. The nucleotide bases are made up of purines (adenine and guanine) and pyrimidines (cytosine and thymine or uracil). These nucleotide bases make up DNA and RNA. These nucleotide base codes make the genome of an organism much smaller and easier to read.[30]
Nucleic acid code | Meaning | Mnemonic |
---|---|---|
A | A | Adenine |
C | C | Cytosine |
G | G | Guanine |
T | T | Thymine |
U | U | Uracil |
R | A or G | Purine |
Y | C, T or U | Pyrimidines |
K | G, T or U | Bases which are ketones |
M | A or C | Bases with amino groups |
S | C or G | Strong interaction |
W | A, T or U | Weak interaction |
B | Not A (i.e. C, G, T or U) | B comes after A |
D | Not C (i.e. A, G, T or U) | D comes after C |
H | Not G (i.e., A, C, T or U) | H comes after G |
V | Neither T nor U (i.e. A, C or G) | V comes after U |
N | A C G T U | Nucleic acid |
X | Masked | |
- | Gap of indeterminate length |
The codes for amino acids (24 amino acids and three special codes) are:
Amino acid code | Meaning |
---|---|
A | Alanine |
B | Aspartic acid or asparagine |
C | Cysteine |
D | Aspartic acid |
E | Glutamic acid |
F | Phenylalanine |
G | Glycine |
H | Histidine |
I | Isoleucine |
J | Leucine or isoleucine |
K | Lysine |
L | Leucine |
M | Methionine |
N | Asparagine |
O | Pyrrolysine |
P | Proline |
Q | Glutamine |
R | Arginine |
S | Serine |
T | Threonine |
U | Selenocysteine |
V | Valine |
W | Tryptophan |
Y | Tyrosine |
Z | Glutamic acid or glutamine |
X | Any |
* | Translation stop |
- | Gap of indeterminate length |
Book name | Description |
---|---|
Principles and Practices of Method Validation |
Principles and Practices of Method Validation is a book entailing methods of validating and analyzing many analytes taken from a single aliquot.[31] Also, this book goes over techniques for analyzing many samples at once. Some methods discussed include: chromatographic methods, estimation of effects, matrix induced effects, and the effect of an equipment setup on an experiment.[31] |
Fundamental Toxicology |
Fundamental Toxicology is a textbook that proposes a curriculum for toxicology courses.[32] Fundamental Toxicology is based on the book Fundamental Toxicology for Chemists.[33] Fundamental Toxicology is enhanced through many revisions and updates. New information added in the revisions includes: risk assessment and management; reproductive toxicology; behavioral toxicology; and ecotoxicology.[33] This book is relatively well received as being useful for reviewing chemical toxicology.[32] |
Macromolecular Symposia |
Macromolecular Symposia is a journal that publishes fourteen issues a year. This journal includes contributions to the macromolecular chemistry and physics field. The meetings of IUPAC are included in this journal along with the European Polymer Federation, the American Chemical Society, and the Society of Polymer Science in Japan.[34] |
The Experimental Thermodynamics books series covers many topics in the fields of thermodynamics.
Book | Description |
---|---|
Measurement of the Transport Properties of Fluids |
Measurement of the Transport Properties of Fluids is a book that is published by Blackwell Science. The topics that are included in this book are low and high temperature measurements, secondary coefficients, diffusion coefficients, light scattering, transient methods for thermal conductivity, methods for thermal conductivity, falling-body viscometers, and vibrating viscometers.[35] |
Solution Calorimetry |
Solution Calorimetry is a book that gives background information on thermal analysis and calorimetry. Thermoanalytical and calorimetric techniques along with thermodynamic and kinetic properties are also discussed. Later volumes of this book discuss the applications and principles of these thermodynamic and kinetic methods.[36] |
Equations of State for Fluids and Fluid Mixtures Part I |
Equations of State for Fluids and Fluid Mixtures Part I is a book that gives up to date equations of state for fluids and fluid mixtures. This book covers all ways to develop equations of state. It gives the strengths and weaknesses of each equation. Some equations discussed include: virial equation of state cubic equations; generalized Van der Waals equations; integral equations; perturbation theory; and stating and mixing rules. Other things that Equations of State for Fluids and Fluid Mixtures Part I goes over are: associating fluids, polymer systems, polydisperse fluids, self-assembled systems, ionic fluids, and fluids near their critical points.[37] |
Measurement of the Thermodynamic Properties of Single Phases |
Measurement of the Thermodynamic Properties of Single Phases is a book that gives an overview of techniques for measuring the thermodynamic quantities of single phases. It also goes into experimental techniques to test many different thermodynamic states precisely and accurately. Measurement of the Thermodynamic Properties of Single Phases was written for people interested in measuring thermodynamic properties.[38] |
Measurement of the Thermodynamic Properties of Multiple Phases |
Measurement of the Thermodynamic Properties of Multiple Phases is a book that includes multiple techniques that are used to study multiple phases of pure component systems. Also included in this book are the measurement techniques to obtain activity coefficients, interfacial tension, and critical parameters. This book was written for researchers and graduate students as a reference source.[39] |
Book name | Description |
---|---|
Atmospheric Particles |
Atmospheric Particles is a book that delves into aerosol science. This book is aimed as a reference for graduate students and atmospheric researchers. Atmospheric Particles goes into depth on the properties of aerosols in the atmosphere and their effect. Topics covered in this book are: acid rain; heavy metal pollution; global warming; and photochemical smog. Atmospheric Particles also covers techniques to analyze the atmosphere and ways to take atmospheric samples.[40] |
Environmental Colloids and Particles: Behaviour, Separation and Characterisation |
Environmental Colloids and Particles: Behaviour, Separation and Characterisation is a book that discusses environmental colloids and current information available on them. This book focuses on environmental colloids and particles in aquatic systems and soils. It also goes over techniques such as: techniques for sampling environmental colloids, size fractionation, and how to characterize of colloids and particles. Environmental Colloids and Particles: Behaviour, Separation and Characterisation also delves into how these colloids and particles interact.[41] |
Biophysical Chemistry of Fractal Structures and Processes in Environmental Systems |
Biophysical Chemistry of Fractal Structures and Processes in Environmental Systems is meant to give an overview of a technique based on fractal geometry and the processes of environmental systems. This book gives ideas on how to use fractal geometry to compare and contrast different ecosystems. It also gives an overview of the knowledge needed to solve environmental problems. Finally, Biophysical Chemistry of Fractal Structures and Processes in Environmental Systems shows how to use the fractal approach to understand the reactivity of flocs, sediments, soils, microorganisms and humic substances.[42] |
Interactions Between Soil Particles and Microorganisms: Impact on the Terrestrial Ecosystem |
Interactions Between Soil Particles and Microorganisms: Impact on the Terrestrial Ecosystem is meant to be read by chemists and biologists that study environmental systems. Also, this book should be used as a reference for earth scientists, environmental geologists, environmental engineers, and professionals in microbiology and ecology. Interactions Between Soil Particles and Microorganisms: Impact on the Terrestrial Ecosystem is about how minerals, microorganisms, and organic components work together to affect terrestrial systems. This book identifies that there are many different techniques and theories about minerals, microorganisms, and organic components individually, but they are not often associated with each other. It further goes on to discuss how these components of soil work together to affect terrestrial life. Interactions Between Soil Particles and Microorganisms: Impact on the Terrestrial Ecosystem gives techniques to analyze minerals, microorganisms, and organic components together. This book also has a large section positing why environmental scientists working in the specific fields of minerals, microorganisms, and organic components of soil should work together and how they should do so.[43] |
The Biogeochemistry of Iron in Seawater |
The Biogeochemistry of Iron in Seawater is a book that describes how low concentrations of iron in Antarctica and the Pacific Ocean are a result of reduced chlorophyll for phytoplankton production.[44] It does this by reviewing information from research in the 1990s. This book goes into depth about: chemical speciation; analytical techniques; transformation of iron; how iron limits the development of high nutrient low chlorophyll areas in the Pacific Ocean.[45] |
In Situ Monitoring of Aquatic Systems: Chemical Analysis and Speciation |
In Situ Monitoring of Aquatic Systems: Chemical Analysis and Speciation is a book that discusses techniques and devices to monitor aquatic systems and how new devices and techniques can be developed. This book emphasizes the future use of micro-analytical monitoring techniques and microtechnology. In Situ Monitoring of Aquatic Systems: Chemical Analysis and Speciation is aimed at researchers and laboratories that analyze aquatic systems such as rivers, lakes, and oceans.[46] |
Structure and Surface Reactions of Soil Particles |
Structure and Surface Reactions of Soil Particles is a book about soil structures and the molecular processes that occur in soil. Structure and Surface Reactions of Soil Particles is aimed at any researcher researching soil or in the field of anthropology. It goes into depth on topics such as: fractal analysis of particle dimensions; computer modeling of the structure; reactivity of humics; applications of atomic force microscopy; and advanced instrumentation for analysis of soil particles.[47] |
Metal Speciation and Bioavailability in Aquatic Systems, Series on Analytical and Physical Chemistry of Environmental Systems Vol. 3 |
Metal Speciation and Bioavailability in Aquatic Systems, Series on Analytical and Physical Chemistry of Environmental Systems Vol. 3 is a book about the effect of trace metals on aquatic life.[48] This book is considered a specialty book for researchers interested in observing the effect of trace metals in the water supply. This book includes techniques to assess how bioassays can be used to evaluate how an organism is affected by trace metals. Also, Metal Speciation and Bioavailability in Aquatic Systems, Series on Analytical and Physical Chemistry of Environmental Systems Vol. 3 looks at the limitations of the use of bioassays to observe the effects of trace metals on organisms. |
Physicochemical Kinetics and Transport at Biointerfaces |
Physicochemical Kinetics and Transport at Biointerfaces is a book created to aid environmental scientists in field work. The book gives an overview of chemical mechanisms, transport, kinetics, and interactions that occur in environmental systems. Physicochemical Kinetics and Transport at Biointerfaces continues from where Metal Speciation and Bioavailability in Aquatic Systems leaves off.[49] |
IUPAC color code their books in order to make each publication distinguishable.[11]
Title | Description |
---|---|
Compendium of Analytical Nomenclature |
One extensive book on almost all nomenclature written (IUPAC nomenclature of organic chemistry and IUPAC nomenclature of inorganic chemistry) by IUPAC committee is the Compendium of Analytical Nomenclature – The Orange Book, 1st edition (1978)[50] This book was revised in 1987. The second edition has many revisions that come from reports on nomenclature between 1976 and 1984.[51] In 1992, the second edition went through many different revisions which led to the third edition.[51] |
Pure and Applied Chemistry (journal) |
Pure and Applied Chemistry is the official monthly journal of IUPAC. This journal debuted in 1960. The goal statement for Pure and Applied Chemistry is to "publish highly topical and credible works at the forefront of all aspects of pure and applied chemistry."[52] The journal itself is available by subscription, but older issues are available in the archive on IUPAC's website. Pure and Applied Chemistry was created as a central way to publish IUPAC endorsed articles.[53] Before its creation, IUPAC did not have a quick, official way to distribute new chemistry information. Its creation was first suggested at the Paris IUPAC Meeting of 1957.[53] During this meeting the commercial publisher of the journal was discussed and decided on. In 1959, IUPAC Pure and Applied Chemistry Editorial Advisory Board was created and put in charge of the journal. The idea of one journal being a definitive place for a vast amount of chemistry was difficult for the committee to grasp at first.[53] However, it was decided that the journal would reprint old journal editions to keep all chemistry knowledge available. |
Compendium of Chemical Terminology |
The Compendium of Chemical Terminology, also known as the "Gold Book", was originally worked on by Victor Gold. This book is a collection of names and terms already discussed in Pure and Applied Chemistry.[54] The Compendium of Chemical Terminology was first published in 1987.[11] The first edition of this book contains no original material, but is meant to be a compilation of other IUPAC works. The second edition of this book was published in 1997.[28] This book made large changes to the first edition of the Compendium of Chemical Terminology. These changes included updated material and an expansion of the book to include over seven thousand terms.[28] The second edition was the topic of an IUPAC XML project. This project made an XML version of the book that includes over seven thousand terms. The XML version of the book includes an open editing policy, which allows users to add excerpts of the written version.[28] |
IUPAC Nomenclature of Organic Chemistry (online publication) | IUPAC Nomenclature of Organic Chemistry, also known as the "Blue Book", is a website published by the Advanced Chemistry Department Incorporated with the permission of IUPAC. This site is a compilation of the books A Guide to IUPAC Nomenclature of Organic Compounds and Nomenclature of Organic Chemistry.[55] |
IUPAC and UNESCO were the lead organizations coordinating events for the International Year of Chemistry, which took place in 2011.[56][57] The International Year of Chemistry was originally proposed by IUPAC at the general assembly in Turin, Italy.[58] This motion was adopted by UNESCO at a meeting in 2008.[58] The main objectives of the International Year of Chemistry were to increase public appreciation of chemistry and gain more interest in the world of chemistry. This event is also being held to encourage young people to get involved and contribute to chemistry. A further reason for this event being held is to honour how chemistry has made improvements to everyone's way of life.[12]
International Council for Science (ICSU)
|
|
---|---|
National members |
|
International scientific |
|
Scientific associates |
|
Periodic table
|
|||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Periodic table |
|
||||||||||||||||||||||||||||||
Sets of elements |
|
||||||||||||||||||||||||||||||
Elements |
|
||||||||||||||||||||||||||||||
History |
|
||||||||||||||||||||||||||||||
See also |
|
||||||||||||||||||||||||||||||
|
Authority control |
|
---|
リンク元 | 「オキソ酸」「International Union of Pure and Applied Chemistry」 |
。]] オキソ酸(オキソさん、Oxoacid)とは、ある原子にヒドロキシル基 (-OH) とオキソ基 (=O) が結合しており、且つそのヒドロキシル基が酸性プロトンを与える化合物のことを指す<ref>IUPAC Gold Book - oxoacids</ref>。ただし、無機化学命名法IUPAC1990年勧告のオキソ酸の定義では、先述した化合物の他にアクア酸(aqua acid)<ref>中心金属イオンに配位した水分子に酸性プロトンが存在する酸。例:ヘキサアクア鉄(III)イオン</ref>、ヒドロキソ酸(hydroxoacid)<ref>隣接するオキソ基が存在しないヒドロキシル基に酸性プロトンが存在する酸。例:オルトケイ酸 (H4SiO4)</ref>もオキソ酸に含まれることになる。無機化合物のオキソ酸の例としては硫酸や硝酸、リン酸などが挙げられる。有機化合物で最も重要なオキソ酸はカルボン酸である。酸性の強弱は化合物の種類によりさまざまなものがある。一般に、オキソ酸は多原子イオンと水素イオンを与える。
オキソ酸が脱水縮合することで、ポリオキソ酸が生成する。例えば、リン酸では二リン酸、三リン酸である。酸無水物も同様に、オキソ酸の脱水縮合生成物にあたる。遷移金属元素のオキソ酸は金属オキソ酸(ポリ酸)と呼ぶ。
単核オキソ酸の酸性度の強さを推定する2つの経験則としてポーリングの規則(Pauling's rules)が知られている。
ただし、この規則に従わないオキソ酸も存在する。例えば炭酸の推定値は3であるが実測値は6.4である。これは水溶液中に溶けている二酸化炭素が僅かしか炭酸にならないためである。このことを考慮に入れるとpKa値は規則通り約3.6となる。また、亜硫酸も規則に従わない。これは溶液中に亜硫酸分子は検出されず、さらにSO2が複雑な平衡を持っているからである。
テンプレート:脚注ヘルプ <references/>
.