出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2014/01/22 21:40:33」(JST)
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (May 2012) |
Varicella zoster virus | |
---|---|
Micrograph of VZV. | |
Virus classification | |
Group: | Group I (dsDNA) |
Order: | Herpesvirales |
Family: | Herpesviridae |
Subfamily: | Alphaherpesvirinae |
Genus: | Varicellovirus |
Species: | Human herpesvirus 3 (HHV-3) |
Synonyms | |
|
Varicella zoster virus (VZV) is one of eight herpes viruses known to infect humans and vertebrates. It commonly causes chickenpox in children, teens and young adults and herpes zoster (shingles) in adults and rarely in children.
VZV is known by many names, including: chickenpox virus, varicella virus, zoster virus, and human herpes virus type 3 (HHV-3).
Primary VZV infection results in chickenpox (varicella), which may rarely result in complications including encephalitis or pneumonia (either direct viral pneumonia or secondary bacterial pneumonia). Even when clinical symptoms of chickenpox have resolved, VZV remains dormant in the nervous system of the infected person (virus latency), in the trigeminal and dorsal root ganglia.[1] In about 10–20% of cases, VZV reactivates later in life producing a disease known as shingles or herpes zoster. VZV is more likely to reactivate in patients with severely compromised immune systems, such as AIDS patients. Serious complications of shingles include postherpetic neuralgia, zoster multiplex, myelitis, herpes ophthalmicus, or zoster sine herpete. Ramsay Hunt syndrome; VZV rarely affects the geniculate ganglion giving lesions that follow specific branches of the facial nerve. Symptoms may include painful blisters on the tongue and ear along with one sided facial weakness and hearing loss.
VZV is closely related to the herpes simplex viruses (HSV), sharing much genome homology. The known envelope glycoproteins (gB, gC, gE, gH, gI, gK, gL) correspond with those in HSV; however, there is no equivalent of HSV gD. VZV also fails to produce the LAT (latency-associated transcripts) that play an important role in establishing HSV latency (herpes simplex virus). VZV virons are spherical and 180–200 nm in diameter. Their lipid envelope encloses the 100 nm nucleocapsid of 162 hexameric and pentameric capsomeres arranged in an icosahedral form. Its DNA is a single, linear, double-stranded molecule, 125,000 nt long. The capsid is surrounded by a number of loosely associated proteins known collectively as the tegument; many of these proteins play critical roles in initiating the process of virus reproduction in the infected cell. The tegument is in turn covered by a lipid envelope studded with glycoproteins that are displayed on the exterior of the virion, each approximately 8 nm long.
The genome was first sequenced in 1986.[2] It is a linear duplex DNA molecule, a laboratory strain has 124,884 base pairs. The genome has 2 predominant isomers, depending on the orientation of the S segment, P (prototype) and IS (inverted S) which are present with equal frequency for a total frequency of 90-95%. The L segment can also be inverted resulting in a total of four linear isomers (IL and ILS). This is distinct from HSV's equiprobable distribution, and the discriminatory mechanism is not known. A small percentage of isolated molecules are circular genomes, about which little is known. (It is known that HSV circularizes on infection.) There are at least 70 open reading frames in the genome.
There are at least five clades of this virus.[3] Clades 1 and 3 include European/North American strains; clade 2 are Asian strains, especially from Japan; and clade 5 appears to be based in India. Clade 4 includes some strains from Europe but its geographic origins need further clarification.
Commonality with HSV1 and HSV2 indicates a common ancestor, five genes do not have corresponding HSV genes. Relation with other human herpes viruses is less strong, but many homologues and conserved gene blocks are still found.
There are five principle clades (1-5) and four genotypes that do not fit into these clades.[4] The current distribution of these clades is Asia (clades 1,2,and 5) and Europe (clades 1, 3 and 4). Allocation of VZV strains to clades required sequence of whole virus genome. Practically all molecular epidemiological data on global VZV strains distribution obtained with targeted sequencing of selected regions.
Phylogenetic analysis of VZV genomic sequences resolves wild-type strains into 9 genotypes (E1, E2, J, M1, M2, M3, M4, VIII and IX).[5][6] Complete sequences for M3 and M4 strains are unavailable, but targeted analyses of representative strains suggest they are stable, circulating VZV genotypes. Sequence analysis of VZV isolates identified both shared and specific markers for every genotype and validated a unified VZV genotyping strategy. Despite high genotype diversity no evidence for intra-genotypic recombination was observed. Five of seven VZV genotypes were reliably discriminated using only four single nucleotide polymorphisms (SNP) present in ORF22, and the E1 and E2 genotypes were resolved using SNP located in ORF21, ORF22 or ORF50. Sequence analysis of 342 clinical varicella and zoster specimens from 18 European countries identified the following distribution of VZV genotypes: E1, 221 (65%); E2, 87 (25%); M1, 20 (6%); M2, 3 (1%); M4, 11 (3%). No M3 or J strains were observed.[5] Of 165 clinical varicella and zoster isolates from Australia and New Zealand typed using this approach, 67 of 127 eastern Australian isolates were E1, 30 were E2, 16 were J, 10 were M1, and 4 were M2; 25 of 38 New Zealand isolates were E1, 8 were E2, and 5 were M1.[7]
The mutation rate for synonymous and nonsynonymous mutation rates among the herpesviruses have been estimated at 1 × 10−7 and 2.7 × 10−8 mutations/site/year, respectively, based on the highly conserved gB gene.[8]
Within the human body it can be treated by a number of drugs and therapeutic agents including acyclovir for the chicken pox, famciclovir, valaciclovir for the shingles, zoster-immune globulin (ZIG), and vidarabine. VZV immune globulin is also a treatment.[9]
A live attenuated VZV Oka/Merck strain vaccine is available and is marketed in the United States under the trade name Varivax. It was developed by Merck, Sharp & Dohme in the 1980s from the Oka strain virus isolated and attenuated by Michiaki Takahashi and colleagues in the 1970s. It was submitted to the US Food and Drug Administration for approval in 1990 and was approved in 1995. Since then, it has been added to the recommended vaccination schedules for children in Australia, the United States, and many other countries. Varicella vaccination has raised concerns in some that the immunity induced by the vaccine may not be lifelong, possibly leaving adults vulnerable to more severe disease as the immunity from their childhood immunization wanes. Vaccine coverage in the United States in the population recommended for vaccination is approaching 90%, with concomitant reductions in the incidence of varicella cases and hospitalizations and deaths due to VZV. So far, clinical data has proved that the vaccine is effective for over 10 years in preventing varicella infection in healthy individuals and when breakthrough infections do occur, illness is typically mild.[10] In 2007, the ACIP recommended a second dose of vaccine before school entry to ensure the maintenance of high levels of varicella immunity.[11]
In 2006, the United States Food and Drug Administration approved Zostavax for the prevention of shingles. Zostavax is a more concentrated formulation of the Varivax vaccine, designed to elicit an immune response in older adults whose immunity to VZV wanes with advancing age. A systematic review by the Cochrane Library shows that Zostavax reduces the incidence of shingles by almost 50%.[12]
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「ワクチン」「水痘・帯状疱疹ウイルス」「VZV」 |
拡張検索 | 「varicella-zoster virus」「varicella-zoster virus pneumonia」 |
関連記事 | 「varicella zoster」「virus」 |
病原体 | 感染症 | ワクチン | 学校伝染病 | ワクチンの形状 | 潜伏期間 | 季節性 | 年齢 | 出席停止解除条件 | |
ジフテリア菌 | Corynebacterium diphtheriae | ジフテリア | ジフテリア,破傷風,百目咳混合ワクチン | トキソイド | |||||
百日咳菌 | Bordetella pertussis | 百日咳 | ○ | 不活化 | 6~14 | 咳の消失 | |||
結核菌 | Mycobacterium tuberculosis | 結核 | BCG | ○ | 不活化 | 伝染のおそれが無くなるまで | |||
ポリオウイルス | poliovirus | ポリオ | ポリオワクチン(経口) | 生 | |||||
麻疹ウイルス | measles virus | 麻疹 | 麻疹・風疹混合ワクチン | ○ | 生 | 10~12 | 0~2 | 解熱後3日 | |
風疹ウイルス | rubella virus | 風疹 | ○ | 生 | 18 | 春~初夏 | 4~9 | 発疹消失 | |
日本脳炎ウイルス | Japanese encephalitis virus | 日本脳炎 | 日本脳炎ワクチン | 不活化 | |||||
インフルエンザウイルス | influenza virus | インフルエンザ | インフルエンザワクチン | ○ | 不活化 | 1~5 | 冬期 | 解熱後2日 | |
インフルエンザ菌 | Haemophilus influenzae | 化膿性髄膜炎など | Hibワクチン | ||||||
肺炎球菌 | Streptococcus pneumoniae | ||||||||
水痘・帯状疱疹ウイルス | varicella zoster virus | 水痘 | ○ | 生 | 11~21 | 冬(12, 1) | 5~9 | 発疹の痂皮化 | |
ムンプスウイルス | mumps virus | 流行性耳下腺炎 | ○ | 生 | 18~21 | 耳下腺腫脹消失 | |||
B型肝炎ウイルス | hepatitis B virus | B型肝炎 | 成分 | 60~160 | |||||
A型肝炎ウイルス | hepatitis A virus | A型肝炎 | 不活化 | 15~40 | |||||
狂犬病ウイルス | rabies virus | 狂犬病 | 不活化 | ||||||
アデノウイルス | adenovirus | 咽頭結膜熱 | ○ | ||||||
黄熱病ウイルス | yellow fever virus | 黄熱病 | 生 |
[★] 水痘・帯状疱疹ウイルス varicella zoster virus varicella-zoster virus
.