- 英
- calcium signaling
- 関
- カルシウム振動、カルシウム波、カルシウムスパイク
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/06/12 10:19:23」(JST)
[Wiki ja表示]
カルシウムシグナリング(英:Calcium Signaling)とは細胞の機能を制御するカルシウムイオン(Ca2+)依存性の情報伝達経路である。脊椎動物では細胞質のCa濃度は低濃度であり、体内のほとんどのCaは骨などの硬組織や細胞内のCa貯蔵庫(Caストア)に貯蔵されている。これらのCaは何らかの刺激をきっかけとして細胞質に流入することにより細胞内のタンパク質と結合して、その機能を調節を行い、細胞内情報伝達機構を制御することが知られている。金属原子が正の電荷を帯びたものであるCa2+は非常に単純なものであるが、細胞内のCa濃度の変化は幅広い細胞応答へとつながっており、セカンドメッセンジャーの一つである。
目次
- 1 生物界におけるCa2+
- 2 カルシウム濃度の変化
- 2.1 細胞外からのCa2+の取り込み
- 2.2 細胞内貯蔵Ca2+の放出
- 2.3 Caイオノフォアによる細胞刺激
- 2.4 細胞質からのCa2+除去
- 3 カルシウム結合タンパク質
- 4 生物活性
- 5 出典
- 6 参考文献
|
生物界におけるCa2+[編集]
生物の体内に存在するCaは遊離型、タンパク質結合型、沈着型があり、脊椎動物ではほとんどが骨などの組織に沈着型として存在している。骨は体の構造の支持や内臓を保護するなどの機能だけではなく、Caの貯蔵庫としての役割もはたしており、血中のCa2+濃度はカルシトニンやパラトルモンと呼ばれるホルモンによって制御されている。一方、細胞内においてはCaは小胞体に貯蔵されており、細胞質のCa2+濃度は通常低く保たれている。細胞の種類によって小胞体の発達の度合いが異なるために細胞によっては細胞外から流入したCa2+が主要なCa源となることもある。真核細胞では特に複雑なシグナル伝達系を有し、Caのような情報伝達分子を必要とする。
カルシウム濃度の変化[編集]
脊髄後角のシナプスにおける情報伝達
[1]。低頻度刺激(LFS)は興奮性の神経伝達物質であるグルタミン酸やサブスタンスPの放出を誘発し、後シナプスの細胞を脱分極させる(1)。後膜に存在するT型電位依存性Ca
2+チャネル(VOCC)が活性化されると(2)、Ca
2+の流入が促進される。また、NK1受容体(3)の刺激はホスホリパーゼCの活性化を介して(4)CaストアからのCa
2+の放出(5)やプロテインキナーゼC(PKC)の活性化(6)を引き起こす。PKCはイオンチャネル型受容体であるNMDA受容体をリン酸化し(7)、Ca
2+を流入させる。この細胞外から流入したCa
2+はリアノジン受容体におけるCa
2+誘導性Ca
2+放出(8)に関与する。放出されたCa
2+はAMPA受容体を活性化し、シナプス伝達の強度が増す。
細胞外からのCa2+の取り込み[編集]
細胞が活性化されることによりイオンチャネルを介した細胞外からのCa2+の流入が引き起こされるが、その経路は様々である。以下にCa2+チャネルの開閉制御機構による分類を示した。
- 電位依存性Ca2+チャネル(VOCC)とはその開閉が細胞膜電位に依存するCa2+チャネルであり、筋肉や神経細胞の細胞膜上に存在する。細胞膜の脱分極が生じるとVOCCは開口して、Ca2+の細胞内流入を促す。VOCCにはL型、P/Q型、R型、T型が存在し、それぞれ異なる特徴を有する。L型は開口に要する脱分極の閾値が高く、持続的にCa2+を流入させる。アムロジピン等のジヒドロピリジン系Ca2+拮抗薬はL型Ca2+チャネルの機能を阻害する。それに対して、T型は一過性であり、小さな脱分極で開口する。なお、各Ca2+チャネルの特徴についてはカルシウムチャネルの項に詳しい。
- 神経細胞では細胞膜上に存在するイオンチャネルがCa2+の流入に重要な役割を果たしている場合がある。興奮性のシナプス伝達に関与し、シナプス後膜に存在するNMDA受容体はAMPA受容体、カイニン酸受容体と並ぶイオンチャネル型グルタミン酸受容体のサブタイプの一種であり、Ca2+に対して高い透過性を示す。NMDA受容体は通常Mg2+によって閉塞されているが、細胞膜の脱分極によりこの抑制が解かれてCa2+が流入可能な状態となる。
- 小胞体などのCaストアからのCa2+放出が長時間続いてCa2+が枯渇した状態になると、細胞外からのCa2+放出が生じる。この機構にはストア作動性Ca2+チャネル(SOC)と呼ばれるイオンチャネルが関与している。SOCは小胞体膜上のイノシトール3リン酸(IP3)受容体と共役して機能していると考えられている。
細胞内貯蔵Ca2+の放出[編集]
細胞内小器官の一つである小胞体はCa2+を貯蔵する役割を有しており、小胞体膜上に存在してCa2+の放出に寄与する分子としてリアノジン受容体が挙げられる。リアノジン受容体はCa2+チャネルとして働くことが知られており、骨格筋の筋小胞体に存在するリアノジン受容体は細胞外のCa2+に対するセンサーとして働くジヒドロピリジン受容体と共役していることが知られている。ジヒドロピリジン受容体により細胞内に取り込まれたCa2+がリアノジン受容体に結合すると、細胞質のCa2+濃度依存的に小胞体内のCa2+を放出する。この機構を「Ca2+誘発性Ca2+放出」(Ca2+-induced Ca2+-release、CICR)と呼ぶ。
また、リアノジン受容体と並んでCa2+の放出に寄与するもう一つの分子がIP3受容体である。IP3はGタンパク質共役受容体を介したシグナルなどにより産生され、小胞体膜上に存在するIP3受容体に結合する。IP3受容体はCa2+チャネルとして働くことが知られており、その構造はリアノジン受容体と相同性を有する。IP3受容体を介した細胞内Ca2+ストアからのCa2+放出はCICRにより行われ、リガンドの結合はチャネルのCa2+に対する感受性を高める働きを有する。
Caイオノフォアによる細胞刺激[編集]
Caイオノフォアとは細胞膜に存在するCaイオンチャネルの透過性を高めて細胞膜におけるCa2+の輸送を亢進させる作用をもつ脂溶性化合物であり、代表的なものとして抗生物質であるA23187(カルシマイシン)やイオノマイシンが知られている。細胞に対するCaイオノフォア刺激は細胞内Ca2+濃度を上昇させる働きを持つことから、生物系の基礎研究において細胞内情報伝達機構へのCa2+の関与を明らかにする目的でよく用いられる。
細胞質からのCa2+除去[編集]
細胞質への放出・取り込みが行われたCa2+はそのままにされるわけではなく、回収が行われ、それはカルシウムシグナリングの収束を意味する。Ca2+の除去は細胞膜上のNa+/Ca2+交換体(NCX)による細胞外排出や小胞体膜上に存在するCa2+ポンプ(Ca2+-ATPase)による取り込みにより行われる。
カルシウム結合タンパク質[編集]
詳細は「カルシウム結合タンパク質」を参照
シグナル伝達分子の中にはCa2+の結合によって機能を調節されるタンパク質が存在し、Ca2+はこれらの分子のEFハンドモチーフやC2ドメインなどと呼ばれる構造に結合する。脊椎動物ではカルモジュリンやトロポニンC、カルパイン、カルシニューリン、プロテインキナーゼC(PKC)、ホスホリパーゼC(PLC)などのCa2+結合タンパク質が存在し、細胞の機能調節に関与している。カルモジュリンはCa2+の結合に関与するEFハンドモチーフを両端に2つずつ(計4つ)有している。EFハンドモチーフはEヘリックスとFヘリックスと呼ばれる2つのαヘリックス構造とそれらをつなぐループ部分により構成される(いわゆるヘリックス-ループ-ヘリックス構造)。Ca2+はこのループ部分に結合する。
生物活性[編集]
筋収縮[編集]
筋肉の収縮はアクチンとトロポミオシンからなる細いフィラメントとミオシンを主成分とする太いフィラメントの相互作用により引き起こされる。筋肉が弛緩した状態においてはアクチンとミオシンの相互作用をトロポニンIが妨げているが、CICRにより放出されたCa2+は筋収縮調節タンパク質であるトロポニンCのEFハンド構造にCa2+が結合するとトロポニンIによる抑制が外れて収縮が引き起こされる。
筋収縮の機構は心筋、骨格筋、平滑筋のそれぞれで特徴を有するが、本題と話が大きく外れるため詳細は他項目に譲る。筋収縮に必要となるCa2+源について言えば、骨格筋では筋小胞体が発達しているため小胞体由来のCa2+が用いられるが、平滑筋や心筋、特に平滑筋ではあまり小胞体が発達していないため細胞外から取り入れたCa2+が重要である。
神経情報伝達[編集]
神経線維を伝導してきて終末部へと達した興奮は前シナプスへのCa2+流入を起こし、シナプス小胞内の神経伝達物質をエキソサイトーシスにより放出する。Ca2+はシナプトタグミンと呼ばれるシナプス小胞膜貫通タンパク質に結合し、小胞体膜とシナプス前膜の膜融合の過程に関与している。神経伝達物質がシナプス後膜の受容体に結合すると膜電位に変化が生じる(シナプス後電位)。
出典[編集]
- Gomperts BD, Kramer IM and Tatham PE 原著『シグナル伝達』メディカル・サイエンス・インターナショナル 2004年 ISBN 489592369X
- 本郷 利憲、廣重 力、豊田 順一 監修『標準生理学 第6版』医学書院 2005年 ISBN 9784260101370
参考文献[編集]
- ^ Drdla R and Sandkühler J.(2008)"Long-term potentiation at C-fibre synapses by low-level presynaptic activity in vivo."Mol.Pain. 4,18. PMID 18507818
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
Japanese Journal
- P4-2 ヒト好酸球カルシウムシグナリングにおけるTRPチャネルの役割(P4 喘息病態,ポスター,第60回日本アレルギー学会秋季学術大会)
- 佐野 安希子,佐野 博幸,岩永 賢司,山縣 俊之,冨田 桂公,久米 裕昭,東田 有智
- アレルギー 59(9・10), 1431, 2010-10-30
- NAID 110008084174
- 血管内皮のカルシウム・シグナリングを介した血流感知機構
- 山本 希美子,安藤 譲二
- YAKUGAKU ZASSHI 130(11), 1407-1411, 2010
- The structure and function of blood vessels adapt to environmental changes, for example, physical development and exercise. This phenomenon is based on the ability of endothelial cells (EC …
- NAID 130000451688
Related Links
- カルシウムシグナリング(英:Calcium Signaling)とは細胞の機能を制御するカルシウム イオン(Ca2+)依存性の情報伝達経路である。脊椎動物では細胞質のCa濃度は低濃度で あり、体内のほとんどのCaは骨などの硬組織や細胞内のCa貯蔵庫(Caストア)に貯蔵 ...
Related Pictures
★リンクテーブル★
[★]
- 英
- calcium oscillation
- 関
- カルシウムシグナリング、カルシウム波、カルシウムスパイク、カルシウムオシレーション
[★]
- 英
- calcium wave
- 関
- カルシウムシグナリング、カルシウム振動、カルシウムスパイク、カルシウムウェーブ
[★]
カルシウムシグナリング
- 関
- calcium oscillation、calcium spike、calcium wave
[★]
- 英
- calcium
- 関
- カルシウムイオン、リン
- calcium channel blockers, calcium channels
基準値
- 血清総Ca 8.6-10.1 mg/dl(臨床検査法提要第32版)
- 8.6-10.2 mg/dL (QB) だいたい 9.4 ± 0.8
- 血清Caイオン 1.15-1.30 mmmol/l(臨床検査法提要第32版), 4.6-5.1 mg/dl
血液ガス
- 血液ガスでは (mEq/l)で出されるが 4倍すれば (mg/dl)に変換できる 原子量が約40ゆえ
溶解度積
リン酸カルシウム
|
366x10-6
|
(30℃)
|
リン酸カルシウム
|
0.35x10-6
|
(38℃)
|
炭酸カルシウム
|
0.0087x10-6
|
(25℃)
|
酒石酸カルシウム
|
0.0077x10-6
|
(25℃)
|
シュウ酸カルシウム
|
0.00257x10-6
|
(25℃)
|
オレイン酸カルシウム
|
0.000291x10-6
|
(25℃)
|
パルチミン酸カルシウム
|
0.000000161x10-6
|
(23℃)
|
カルシウムの吸収(SP.744)
- +健康成人の1日あたりの食物Ca摂取0.6g
- +消化管分泌物と脱落上皮細胞のCa 0.6g
- -吸収されるCa 0.7g
- -そのまま排泄 0.5g
- 正味吸収されるCa 0.1g
カルシウムの吸収部位
カルシウム代謝の調節機構
副甲状腺ホルモン
- 1. 破骨細胞に作用してCa,Pが血中へ。
- 2. 腎の遠位尿細管に作用してCa再吸収の亢進、近位尿細管でのP再吸収の抑制。
- 3. 近位尿細管に作用して酵素を活性化し、1,25水酸化ビタミンD3の産生亢進。
1,25(OH)2D3
- 1. 空腸からのCaとPの吸収。
- 2. 骨形成促進。
- 3. 遠位尿細管でのCaとPの再吸収促進。
- 4. 副甲状腺ホルモンの合成を抑制
尿細管における部位別カルシウム輸送
- 糸球体で濾過されるのはイオン化Caと陰イオン複合型Ca(蛋白結合型Caは濾過されない)
- 濾過されたカルシウムのうち95%が再吸収される。
- 近位尿細管:60-70%
- ヘンレループ:20-25%
- 遠位尿細管、集合管:10-15%
近位尿細管
- Na+依存的に再吸収。受動輸送80%、能動輸送20%
- 基底側のCa2+ ATPase, 3Na+-Ca2+逆輸送系
ヘンレループ
- 太いヘンレループ上行脚で
- 受動輸送:管腔内電位が正であるため
遠位尿細管~集合管
- 糸球体濾過量の10-15%が再吸収されている → 量としては少ないが能動的に吸収が行われる部位。
- 能動輸送:管腔内電位が負であるため。
- PTH、カルシトニンに調節されている
- チアジド系利尿薬により細胞内Na↓となるとCa再吸収↑となる!!!! ← ループ利尿薬と違う点。よって高カルシウム血症が起こることがある。
接合尿細管
- 管腔側:Ca2+チャネル/非選択的カチオンチャネル
- 基底側:Na+-K+ ATPase, 3Na+-Ca2+交換系
尿細管におけるカルシウムの輸送の調節 SP.796
- Ca2+の尿中排泄量はNa+の尿中排泄量と比例。循環血漿量が増加するとCa2+排泄も増加
- Ca2+の尿中排泄量は血漿Ca2+濃度と比例する。
血清カルシウム濃度
- 血液中でCa2+は調節を受けて一定に保たれるが、蛋白と結合しているCaはアルブミンの量によって増減する。
- 血清アルブミン濃度 4 g/dl、血清Ca濃度 9mg/dl。補正Ca濃度 9mg/dl → 正常
- 血清アルブミン濃度 2 g/dl、血清Ca濃度 7mg/dl。 → 大変!!低カルシウム血症!! → ホント? ってことになる。アルブミンの量が減ってAlb-Caが減っただけで生理的に重要なCa2+は保たれているのではないか。 → こんな時に補正Ca濃度を用いるのである
- →補正Ca濃度 9mg/dl → 正常
- つまり、低アルブミン血症ではCa2+は保たれているにもかかわらず、血清Caは低値となりそのままでは評価できないために補正を行う。
- 補正Ca濃度(mg/dl)=Ca実測値(mg/dl)+(4-血清アルブミン濃度(g/dl)) ・・・Payneの式
- アルブミンのpIは7より小さく、アシデミアでは負に帯電しているアルブミンが減少、アルカレミアでは負に帯電しているアルブミンが増加する。すなわち、pHが下がるとアルブミンとくっつなくなったCaが増加するので、血液pH0.1の低下につきfreeイオン化Ca(Ca2+)は0.12mg/dl増加する???????????
循環血液量
血清Ca濃度
- 血清Ca濃度↑→PTH↓
- 生理活性のあるのはイオン化Ca(Ca2+)のみ
- 血清Ca濃度=イオン化Ca(45%) + 蛋白結合型Ca(40%) + 陰イオン複合型Ca(15%)
- イオン化Caは一定に保たれる
pH
- アシドーシス :pHが小さくなると負電荷減少:蛋白のCa結合能↓、イオン化Ca↑
- アルカローシス:pHが大きくなると負電荷増加:蛋白Caの結合能↑、イオン化Ca↓→Ca欠乏(低カルシウム血症)
低蛋白血症
- 低蛋白血症の際、蛋白結合型Caは減少するが、イオン化Ca一定。
尿中カルシウム
血中カルシウムと尿中カルシウム
- 薬剤などの影響がなければ、血中カルシウムと尿中カルシウムは相関がありそうである → 副甲状腺ホルモン
血清カルシウムと心電図
元素
- 金属元素。周期表第2族アルカリ土類金属元素
- 原子番号:20
- 元素記号:Ca
- 原子量 40.078 g/mol
臨床関連
参考
- http://www.orth.or.jp/osteoporose/caseizai.html
[★]
- 英
- phosphorus P
- 関
- serum phosphorus level
分子量
- 30.973762 u (wikipedia)
- 単体で化合物としてはP4、淡黄色を帯びた半透明の固体、所謂黄リンで毒性が高い。分子量124.08。
基準値
- 血清中のリンおよびリン化合物(リン酸イオンなどとして存在)を無機リン(P)として定量した値。
- (serum)phosphorus, inorganic 2.5–4.3 mg/dL(HIM.Appendix)
- 2.5-4.5 mg/dL (QB)
代謝
- リンは経口的に摂取され、小腸から吸収され、細胞内に取り込まれる。
- 骨形成とともに骨に取り込まれる。
- 腎より排泄される。
尿細管での分泌・再吸収
- 排泄:10%
尿細管における再吸収の調節要素
臨床検査
- 無機リンとして定量される。
基準範囲
血清
- 小児:4-7mg/dL
- 閉経後女性は一般集団より0.3mg/dL高値となる
尿
測定値に影響を与える要因
臨床関連
参考
- http://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%B3
[★]
- 英
- ring
- 関
- 環、輪、弁輪