出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2014/12/04 07:49:02」(JST)
Digestive system | |
---|---|
Human digestive system
|
|
Details | |
Latin | Systema digestorium |
Identifiers | |
TA | A05.0.00.000 |
FMA | FMA:7152 |
Anatomical terminology |
In the human digestive system, the process of digestion has many stages, the first of which starts in the mouth (oral cavity). Digestion involves the breakdown of food into smaller and smaller components which can be absorbed and assimilated into the body. The secretion of saliva helps to produce a bolus which can be swallowed in the oesophagus to pass down into the stomach.
Saliva also contains a catalytic enzyme called amylase which starts to act on food in the mouth. Digestion is helped by the mastication of food by the teeth and also by the muscular contractions of peristalsis. Gastric juice in the stomach is essential for the continuation of digestion as is the production of mucus in the stomach.
Peristalsis is the rhythmic contraction of muscles that begins in the oesophagus and continues along the wall of the stomach and the rest of the gastrointestinal tract. This initially results in the production of chyme which when fully broken down in the small intestine is absorbed into the blood. Most of the digestion of food takes place in the small intestine. Water and some minerals are reabsorbed back into the blood, in the colon of the large intestine. The waste products of digestion are defecated from the anus via the rectum.
There are several organs and other components involved in the digestion of food and the largest structure of the digestive system is the gastrointestinal tract (GI).
This starts at the mouth and ends at the anus, covering a distance of about nine (9) metres.[1]
The largest component of the GI tract is the colon. Other components include the mouth, teeth and epiglottis, and the accessory digestive glands, the liver, gall bladder and pancreas,
The mouth, is the first part of the alimentary canal and is equipped with several structures that begin the first processes of digestion. These include salivary glands, teeth and the tongue. The mouth, consists of two regions, the vestibule and the oral cavity proper. The vestibule is the area between the teeth, lips and cheeks.[2]and the rest is the oral cavity proper. Most of the oral cavity is lined with oral mucosa a mucous membrane that produces a lubricating mucus, of which only a small amount is needed. Mucous membranes vary in structure in the different regions of the body but they all produce a lubricating mucus, which is either secreted by surface cells or more usually by underlying glands. The mucous membrane in the mouth continues as the thin mucosa which lines the bases of the teeth. The main component of mucus is a glycoprotein called mucin and the type secreted varies according to the region involved. Mucin is viscous, clear, and clinging. Underlying the mucous membrane in the mouth is a thin layer of smooth muscle tissue and the loose connection to the membrane gives it its great elasticity.[3] It covers the cheeks, inner surfaces of the lips, and floor of the mouth.[4] The roof of the mouth is termed the palate and it separates the oral cavity from the nasal cavity. The palate is hard at the front of the mouth since the overlying mucosa is covering a plate of bone; it is softer and more pliable at the back being made of muscle and connective tissue, and it can move to swallow food and liquids. The soft palate ends at the uvula. The surface of the hard palate allows for the pressure needed in eating food, to leave the nasal passage clear.[5] The lips are the mouth's front boundary and the fauces (the passageway between the tonsils, also called the throat), mark its posterior boundary. At either side of the soft palate are the palatoglossus muscles which also reach into regions of the tongue. These muscles raise the back of the tongue and also close both sides of the fauces to enable food to be swallowed. Mucus helps in the mastication of food in its ability to soften and collect the food in the formation of the bolus.
There are three pairs of main salivary glands and between 800 and 1,000 minor salivary glands, all of which mainly serve the digestive process, and also play an important role in the maintenance of dental health and general mouth lubrication, without which speech would be impossible. The main glands are all exocrine glands, secreting via ducts. All of these glands terminate in the mouth. The largest of these are the parotid glands – their secretion is mainly serous. The next pair are underneath the jaw, the submandibular glands, these produce both serous fluid and mucus.They produce about 70% of the oral cavity saliva. The third pair are the sublingual glands located underneath the tongue their secretion is mainly mucous with a small percentage of saliva. Within the submucosa of the mucous membranes lining the mouth and also on the tongue and palates and mouth floor, are the minor salivary glands; their secretions are mainly mucous and are innervated by the facial nerve, the seventh cranial nerve. The glands also secrete amylase a first stage in the breakdown of food acting on the carbohydrate in the food to transform the starch content into maltose. There are other glands on the surface of the tongue that encircle taste buds on the back part of the tongue and these produce a serous fluid which contains lipase (lingual lipase). Lipase is a digestive enzyme that catalyses the hydrolysis of lipids (fats). These glands are termed Von Ebner's glands which have also been shown to have another function in the secretion of histatins which offer an early defense (outside of the immune system) against microbes in food, when it makes contact with these glands on the tongue tissue.[6] Sensory information can stimulate the secretion of saliva providing the necessary fluid for the tongue to work with and also to ease swallowing of the food.
Saliva functions initially in the digestive system to moisten and soften food into the formation of a bolus. The bolus is further helped by the lubrication provided by the saliva in its passage from the mouth into the oesophagus. Also of importance is the presence in saliva of the digestive enzymes amylase and lipase. Amylase starts to work on the starch in carbohydrates, breaking it down into the simple sugars of maltose and dextrose that can be further broken down in the small intestine. Saliva in the mouth can account for 30% of this initial starch digestion. Lipase starts to work on breaking down fats. Lipase is further produced in the pancreas where it is released to continue this digestion of fats. The presence of salivary lipase is of prime importance in young babies whose pancreatic lipase has yet to be developed.[7]
As well as its role in supplying digestive enzymes, saliva has a cleansing action for the teeth and mouth, and has an immunological role in supplying antibodies to the system, such as immunoglobulin A. This is seen to be key in preventing infections of the salivary glands, importantly that of parotitis.
Saliva also contains a glycoprotein called haptocorrin which is a binding protein to vitamin B12. It binds with the vitamin in order to carry it safely through the acidic content of the stomach. When it reaches the duodenum, pancreatic enzymes break down the glycoprotein and free the vitamin which then binds with intrinsic factor.
Food enters the mouth where the first stage in the digestive process takes place, with the action of the tongue and the secretion of saliva. The tongue is a fleshy and muscular sensory organ, and the very first sensory information is received via the taste buds on its surface. If the taste is agreeable the tongue will go into action, manipulating the food in the mouth which stimulates the secretion of saliva from the salivary glands. The liquid quality of the saliva will help in the softening of the food and its enzyme content will start to break down the food whilst it is still in the mouth. The first part of the food to be broken down is the starch of carbohydrates. The tongue is attached to the floor of the mouth by a ligamentous band called the frenum[8] and this gives it great mobility for the manipulation of food (and speech); the range of manipulation is optimally controlled by the action of several muscles and limited in its external range by the stretch of the frenum. The tongue's two sets of muscles, are four intrinsic muscles that originate in the tongue and are involved with its shaping, and four extrinsic muscles originating in bone that are involved with its movement.
Taste is a form of chemoreception that takes place in the specialised receptors of taste cells, contained in structures called taste buds in the mouth. Taste buds are mainly on the upper surface (dorsum) of the tongue. Taste perception is vital to help prevent harmful or rotten foods from being consumed. This is a function of the gustatory system where the taste buds are at the forefront. There are taste buds elsewhere in the mouth not just on the surface of the tongue. The taste buds are innervated by a branch of the facial nerve the chorda tympani, and the glossopharyngeal nerve. Taste messages are sent via these cranial nerves to the brain. The brain can distinguish between the chemical qualities of the food. The five basic tastes are referred to as those of saltiness, sourness, bitterness and sweetness, and the most recent addition of a certain savouriness termed umami. The detection of saltiness and sourness enables the control of salt and acid balance. The detection of bitterness warns of poisons – many of a plant's defences are of poisonous compounds that are bitter. Sweetness guides to those foods that will supply energy; the initial breakdown of the energy-giving carbohydrates by salivary amylase creates the taste of sweetness since simple sugars are the first result. The taste of umami is thought to signal protein-rich food. Sour tastes are acidic which is often found in bad food. The brain has to decide very quickly whether to eat the food or not. It was the findings in 1991, describing the first olfactory receptors that helped to prompt the research into taste. The olfactory receptors are located on cell surfaces in the nose which bind to chemicals enabling the detection of smells. It is assumed that signals from taste receptors work together with the signals from those in the nose, to form an idea of complex food flavours.[9]
Teeth are complex structures made of materials specific to them. They are made of a bone–like material dentin, which is covered by the hardest tissue in the body—enamel.[10] Teeth have different shapes to deal with different aspects of mastication employed in tearing and chewing pieces of food into smaller and smaller pieces. Incisors are used for cutting or biting off pieces of food; canines, are used for tearing, premolars and molars for chewing and grinding. Mastication of the food with the help of saliva and mucus results in the formation of a soft bolus which can then be swallowed to make its way down the upper gastrointestinal tract to the stomach. Dental health is maintained by the salivary secretion of gingival crevical fluid.[11] The digestive enzymes in saliva also help in keeping the teeth clean by breaking down any lodged food particles.
The epiglottis is a flap that is made of elastic cartilage and attached to the entrance of the larynx. It is covered with a mucous membrane and there are taste buds on its lingual surface which faces into the mouth.[12] Its laryngeal surface faces into the larynx. The epiglottis functions to guard the entrance of the glottis, the opening between the vocal folds. It is normally pointed upward during breathing with its underside functioning as part of the pharynx, but during swallowing, the epiglottis folds down to a more horizontal position, with its upper side functioning as part of the pharynx. In this manner it prevents food from going into the trachea and instead directs it to the esophagus, which is posterior. During swallowing, the backward motion of the tongue forces the epiglottis over the glottis' opening to prevent any food that is being swallowed from entering the larynx which leads to the lungs; the larynx is also pulled upwards to assist this process. Stimulation of the larynx by ingested matter produces a strong cough reflex in order to protect the lungs.
The pharynx is a part of the digestive system and also a part of the conducting zone of the respiratory system. It is the part of the throat immediately behind the nasal cavity at the back of the mouth and superior to the esophagus and larynx.The pharynx is made up of three parts. The lower two parts–the oropharynx and the laryngopharynx are involved in the digestive system. The laryngopharynx connects to the oesophagus and it serves as a passageway for both air and food. Air enters the larynx anteriorly but anything swallowed has priority and the passage of air is temporarily blocked. The pharynx is innervated by the pharyngeal plexus of vagus nerve. Muscles in the pharynx push the food into the oesophagus.The pharynx joins the oesophagus at the oesophageal inlet which is located behind the cricoid cartilage.
The oesophagus commonly known as the gullet, is an organ which consists of a muscular tube through which food passes from the pharynx to the stomach. The oesophagus is continuous with the laryngeal part of the pharynx. It passes through the posterior mediastinum in the thorax and enters the stomach through a hole in the diaphragm at the level of the tenth thoracic vertebra (T10). Its length averages 25 cm, varying with height . It is divided into cervical, thoracic and abdominal parts. The pharynx joins the oesophagus at the esophageal inlet which is behind the cricoid cartilage. At rest the oesophagus is closed at both ends, by the upper and lower oesophageal sphincters. The opening of the upper sphincter is triggered by the swallowing reflex so that food is allowed through. The sphincter also serves to prevent back flow from the oesophagus into the pharynx. The oesophagus has a mucous membrane and the epithelium which has a protective function is continuously replaced due to the volume of food that passes inside the oesophagus. During swallowing, food passes from the mouth through the pharynx into the oesophagus. The epiglottis folds down to a more horizontal position so as to prevent food from going into the trachea, instead directing it to the oesophagus. Once in the oesophagus, the bolus travels down to the stomach via rhythmic contraction and relaxation of muscles known as peristalsis .The lower oesophageal sphincter is a muscular sphincter surrounding the lower part of the oesophagus. The junction between the oesophagus and the stomach (the gastroesophageal junction) is controlled by the lower oesophageal sphincter, which remains constricted at all times other than during swallowing and vomiting to prevent the contents of the stomach from entering the oesophagus. As the oesophagus does not have the same protection from acid as the stomach, any failure of this sphincter can lead to heartburn. The oesophagus has a mucous membrane of epithelium which has a protective function as well as providing a smooth surface for the passage of food. Due to the high volume of food that is passed over time, this membrane is continuously renewed.
The diaphragm is an important part of the body's digestive system. The diaphragm separates the thoracic cavity from the abdominal cavity where most of the digestive organs are located. The suspensory muscle attaches the ascending duodenum to the diaphragm. This muscle is thought to be of help in the digestive system in that its attachment offers a wider angle to the duodenojejunal flexure for the easier passage of digesting material. The diaphragm also attaches to the bare area of the liver, which it anchors. The oesophagus enters the abdomen through a hole in the diaphragm at the level of T10.
Gastric acid (informally gastric juice), produced in the stomach plays a vital role in the digestive process, it mainly contains hydrochloric acid and sodium chloride. A peptide hormone gastrin produced by G cells in the stomach, stimulates the production of gastric juice which activates the digestive enzymes. Pepsinogen is a zymogen produced by the gastric chief cells and gastric acid activates this to the enzyme pepsin which begins the digestion of proteins. As these two chemicals would damage the stomach wall, mucus is secreted by the stomach, to provide a slimy protective layer against the damaging effects of the chemicals. At the same time that protein is being digested, mechanical churning occurs through the action of peristalsis, waves of muscular contractions that move along the stomach wall. This allows the mass of food to further mix with the digestive enzymes. Gastric lipase secreted by the chief cells in the fundic glands in the gastric mucosa of the stomach, is an acidic lipase, in contrast with the alkaline pancreatic lipase. This breaks down fats to some degree though is not as efficient as the pancreatic lipase.
The pylorus, the lowest section of the stomach which attaches to the duodenum via the pyloric canal, contains countless glands which secrete digestive enzymes including gastrin. After an hour or two, a thick semi-liquid called chyme is produced. When the pyloric sphincter, or valve opens, chyme enters the duodenum where it mixes further with digestive enzymes from the pancreas, and then passes through the small intestine, where digestion continues. When the chyme is fully digested, it is absorbed into the blood. 95% of absorption of nutrients occurs in the small intestine. Water and minerals are reabsorbed back into the blood in the colon of the large intestine, where the environment is slightly acidic. Some vitamins, such as biotin and vitamin K produced by bacteria in the colon are also absorbed.
The parietal cells in the fundus of the stomach, produce a glycoprotein called intrinsic factor which is essential for the absorption of vitamin B12. Vitamin B12 (cobalamin), is carried to, and through the stomach, bound to a glycoprotein secreted by the salivary glands - transcobalamin I also called haptocorrin, which protects the acid-sensitive vitamin from the acidic stomach contents. Once in the more neutral duodenum, pancreatic enzymes break down the protective glycoprotein. The freed vitamin B12 then binds to intrinsic factor which is then absorbed by the enterocytes in the ileum.
The stomach is a distensible organ and can normally expand to hold about one litre of food.[13] The stomach of a newborn baby will only be able to expand to retain about 30 ml.
The spleen breaks down both red and white blood cells that are spent. This is why it is sometimes known as the 'graveyard of red blood cells' . A product of this digestion is the pigment bilirubin which is sent to the liver and secreted in the bile. Another product is iron which is used in the formation of new blood cells in the bone marrow.[3] Western medicine treats the spleen solely as belonging to the lymphatic system, though it is acknowledged that the full range of its important functions is not yet understood.[14] In contrast to this view, traditional Chinese medicine sees the spleen to be of central importance in the digestive system. The role of the spleen is seen to affect the health and vitality of the body in its turning of digested material from the stomach into usable nutrients and energy. Symptoms that include poor appetite, indigestion, bloating and jaundice, are seen to be indications of an imbalance in the spleen. The spleen is further seen to play a part in the metabolism of water, in ridding the body of excess fluid.[15] In the west, the spleen is seen to be paired with the stomach but in Chinese medicine, reference is made to the spleen system, which involves the pancreas. Fluids in the body are seen in traditional Chinese medicine to be under the control of the spleen. Fluids include digestive enzymes, saliva, mucus, fluid in the joints, tears, sweat and urine. They are categorised as thin and thick and together they are seen as nourishing all tissues and organs. In acupuncture two widely used acupuncture points - the stomach, (close to the knee) and the spleen, (halfway down from the knee) have long been seen to be connected and involved in digestive issues.
The liver is the largest organ (after the skin) and is an accessory digestive gland which plays a role in the body's metabolism. The liver has many functions some of which are important to digestion. The liver can detoxify various metabolites; synthesise proteins and produce biochemicals needed for digestion. It regulates the storage of glycogen which it can form from glucose (glycogenesis). The liver can also synthesise glucose from certain amino acids. Its digestive functions are largely involved with the breaking down of carbohydrates. It also maintains protein metabolism in its synthesis and degradation. In lipid metabolism it synthesises cholesterol. Fats are also produced in the process of lipogenesis. The liver synthesises the bulk of lipoproteins.The liver is located in the upper right quadrant of the abdomen and below the diaphragm to which it is attached at one part, This is to the right of the stomach and it overlies the gall bladder. The liver produces bile, an important alkaline compound which aids digestion.
Bile produced by the liver is made up of water (85%), bile salts, mucus and pigments, 1% fats and inorganic salts. Bilirubin is its major pigment. Bile acts partly as a surfactant which lowers the surface tension between either two liquids or a solid and a liquid and helps to emulsify the fats in the chyme. Food fat is dispersed by the action of bile into smaller units called micelles. The breaking down into micelles creates a much larger surface area for the pancreatic enzyme, lipase to work on. Lipase digests the tryglycerides which are broken down into two fatty acids and a monoglyceride. These are then absorbed by villi on the intestinal wall. If fats are not absorbed in this way in the small intestine problems can arise later in the large intestine which is not equipped to absorb fats. Bile also helps in the absorption of vitamin K from the diet. Bile is collected and delivered through the common hepatic duct. This duct joins with the cystic duct to connect in a common bile duct with the gallbladder. Bile is stored in the gallbladder for release when food is discharged into the duodenum and also after a few hours.[16]
The gallbladder is a hollow part of the biliary system that sits just beneath the liver. It is a small organ where the bile produced by the liver is stored, before it is released into the small intestine. The bile flows from the liver through the bile ducts and into the gall bladder for storage. The bile is released in response to cholecystokinin (CKK) a hormone released from the small intestine.It is divided into three sections: fundus, body and neck. The neck tapers and connects to the biliary tree via the cystic duct, which then joins the common hepatic duct to become the common bile duct. At the neck of the gallbladder is a mucosal fold called Hartmann's pouch, where gallstones commonly get stuck. The angle of the gallbladder is located between the costal margin and the lateral margin of the rectus abdominis muscle. The fundus is at the same level as the transpyloric plane; the body is attached to the liver.The muscularis, is a layer of smooth muscular tissue that helps the gallbladder contract, so that it discharges its bile into the bile duct. The gallbladder needs to store bile in a natural, semi-liquid form at all times. Hydrogen ions secreted from the inner lining of the gallbladder keep the bile acidic enough to prevent hardening. To dilute the bile, water and electrolytes from the digestion system are added. Also, salts attach themselves to cholesterol molecules in the bile to keep them from crystallising. If there is too much cholesterol or bilirubin in the bile, or the gallbladder doesn't empty properly the systems can fail. This is how gallstones form when a small piece of calcium gets coated with either cholesterol or bilirubin and the bile crystallises and forms a gallstone. The main purpose of the gallbladder is to store and release bile, or gall. The liver produces the bile and then it flows through the bile ducts into the gallbladder. When the bile is released, it is released into the small intestine and its purpose is to break down large fat molecules into smaller ones. After the fat is absorbed, the bile is also absorbed and transported back to the liver for reuse.
The pancreas is a major organ functioning as an accessory digestive gland in the digestive system. It is both an endocrine gland and an exocrine gland.[17]The endocrine part secretes insulin when the blood sugar becomes high; insulin moves glucose from the blood into the muscles and other tissues for use as energy. The exocrine part releases glucagon when the blood sugar is low; glucagon allows stored sugar to be broken down into glucose by the liver in order to re–balance the sugar levels. Digestive enzymes are also produced. The pancreas lies below and at the back of the stomach. It connects to the duodenum via the pancreatic duct where it can act on the chyme that is released from the stomach into the duodenum. There is a nearby connection of the common bile duct to the duodenum. Aqueous pancreatic secretions from duct cells contain bicarbonate ions which are alkaline and help to neutralise the acidic chyme that is churned out by the stomach. The pancreas is also the main source of enzymes for the digestion of fats (lipids) and proteins. (The enzymes that digest polysaccharides, by contrast, are primarily produced by the walls of the intestines.) The cells are filled with secretory granules containing the precursor digestive enzymes. The major proteases, the pancreatic enzymes which work on proteins, are trypsinogen and chymotrypsinogen. Elastase is also produced. Smaller amounts of lipase and amylase are secreted. The pancreas also secretes phospholipase A2, lysophospholipase, and cholesterol esterase. The precursor proenzymes ( also called zymogens), are inactive variants of the enzymes; which avoids the onset of pancreatitis caused by autodegradation. Once released in the intestine, the enzyme enteropeptidase present in the intestinal mucosa activates trypsinogen by cleaving it to form trypsin; further cleavage results in chymotripsin.
The lower gastrointestinal tract (GI), includes the small intestine and all of the large intestine.[18]The intestine is also called the bowel or the gut. The lower GI starts at the pyloric sphincter of the stomach and finishes at the anus. The small intestine is subdivided into the duodenum, the jejunum and the ileum. The caecum marks the division between the small and large intestine. The large intestine includes the rectum and anal canal. [19][20]
Food eaten, starts to arrive in the small intestine after one hour, and after two hours the stomach has emptied. Until this time the food is termed a bolus. It then becomes the partially digested semi-liquid termed chyme. In the small intestine, the pH becomes crucial; it needs to be finely balanced in order to activate digestive enzymes. The chyme is very acidic, with a low pH, having been released from the stomach and needs to be made much more alkaline. This is achieved in the duodenum by the addition of bile from the gall bladder combined with the bicarbonate secretions from the pancreatic duct and also from secretions of mucus-rich bicarbonate from duodenal glands known as Brunner's glands. The chyme arrives in the intestines having been released from the stomach through the opening of the pyloric sphincter. The resulting alkaline fluid mix, neutralises the gastric acid which would damage the lining of the intestine. The mucus component lubricates the walls of the intestine. When the digested food particles are reduced enough in size and composition, they can be absorbed by the intestinal wall and carried to the bloodstream. The first receptacle for this chyme is the duodenal bulb. From here it passes into the first of the three sections of the small intestine, the duodenum. (The next section is the jejunum and the third is the ileum). The duodenum is the first and shortest section of the small intestine. It is a hollow, jointed C-shaped tube connecting the stomach to the jejunum. It starts at the duodenal bulb and ends at the suspensory muscle of duodenum. The attachment of the suspensory muscle to the diaphragm is thought to help the passage of food by making a wider angle at its attachment.
Most food digestion takes place in the small intestine. In the duodenum, pancreatic lipase is secreted together with a co-enzyme, colipase to further digest the fat content of the chyme. From this breakdown, smaller particles of emulsified fats called chylomicrons are produced. There are also digestive cells called enterocytes lining the intestines (the majority being in the small intestine). They are unusual cells in that they have villi on their surface which in turn have innumerable microvilli on their surface. All these villi make for a greater surface area, not only for the absorption of chyme but also for its further digestion by large numbers of digestive enzymes present on the microvilli.
The cholymicrons are small enough to pass through the enterocyte villi and into their lymph capillaries called lacteals. A milky fluid called chyle consisting mainly of the emulsified fats of the cholymicrons results from the absorbed mix with the lymph in the lacteals. Chyle is then transported through the lymphatic system to the rest of the body.
The suspensory muscle marks the end of the duodenum and the division between the upper gastrointestinal tract and the lower GI tract. The digestive tract continues as the jejunum which continues as the ileum. The jejunum, the midsection of the small intestine contains circular folds, flaps of doubled mucosal membrane which partially encircle and sometimes completely encircle the lumen of the intestine. These folds together with villi serve to increase the surface area of the jejunum enabling an increased absorption of digested sugars, amino acids and fatty acids into the bloodstream. The circular folds also slow the passage of food giving more time for nutrients to be absorbed.
The last part of the small intestine is the ileum. This also contains villi and vitamin B12; bile acids and any residue nutrients are absorbed here. When the chyme is exhausted of its nutrients the remaining waste material changes into the semi solids called faeces, which pass to the large intestine, where bacteria in the gut flora further break down residual proteins and starches. [21]
The caecum is a pouch marking the division between the small intestine and the large intestine.[22] The caecum receives chyme from the last part of the small intestine, the terminal ileum, and connects to the ascending colon of the large intestine. At this junction there is a sphincter or valve, the ileocecal valve which slows the passage of chyme from the ileum, allowing further digestion. It is also the site of the appendix attachment.
In the large intestine, the passage of the digesting food in the colon is a lot slower, taking from 12 to 50 hours until it is removed by defecation. The colon mainly serves as a site for the fermentation of digestible matter by the gut flora. The time taken varies considerably between individuals. The remaining semi-solid waste is termed faeces and is removed by the coordinated contractions of the intestinal walls, termed peristalsis, which propels the excreta forward to reach the rectum and exit via defecation from the anus. The wall has an outer layer of longitudinal muscles, the taeniae coli, and an inner layer of circular muscles. The circular muscle keeps the material moving forward and also prevents any back flow of waste. Also of help in the action of peristalsis is the basal electrical rhythm that determines the frequency of contractions.[23]The taeniae coli can be seen and are responsible for the bulges (haustra) present in the colon. Most parts of the GI tract are covered with serous membranes and have a mesentery. Other more muscular parts are lined with adventitia.
The enteric nervous system, consisting of some one hundred million neurons,[24] is embedded in the peritoneum, the lining of the gastrointestinal tract extending from the oesophagus to the anus.[25] The neurons are collected into two plexuses – the myenteric plexus known as Auerbach's plexus and Meissner's plexus. Auerbach's plexus lies between the longitudinal and the smooth muscle layers. Meissner's plexus lies between the circular smooth muscle layer and the mucosa.
Parasympathetic innervation to the ascending colon is supplied by the vagus nerve. Sympathetic innervation is supplied by the splanchnic nerves that join the celiac ganglia. Most of the digestive tract is innervated by the two large celiac ganglia, with the upper part of each ganglion joined by the greater splanchnic nerve and the lower parts joined by the lesser splanchnic nerve. It is from these ganglia that many of the gastric plexuses arise.
Each part of the digestive system is subject to a wide range of disorders. A common disorder of the bowel is diverticulitis. Diverticula are small pouches that can form inside the bowel wall, which can become inflamed to give diverticulitis. This disease can have complications if an inflamed diverticulum bursts and infection sets in. Any infection can spread further to the lining of the abdomen (peritoneum) and cause potentially fatal peritonitis.
Crohn's disease is a common chronic inflammatory bowel disease (IBD), which can affect any part of the GI tract,[26]but it mostly starts in the terminal ileum.
Ulcerative colitis an ulcerative form of colitis, is the other major inflammatory bowel disease which is restricted to the colon and rectum. Both of these IBDs can give an increased risk of the development of colorectal cancer. Ulcerative coliltis is the most common of the IBDs[27]
There are several idiopathic disorders known as functional gastrointestinal disorders that the Rome process has helped to define.[28] The most common of these is irritable bowel syndrome (IBS).
Giardiasis is a disease of the small intestine caused by a protist parasite Giardia lamblia. This does not spread but remains confined to the lumen of the small intestine.[29]It can often be asymptomatic, but as often can be indicated by a variety of symptoms. Giardiasis is the most common pathogenic parasitic infection in humans.[30]
Neurogastroenterology
|accessdate=
requires |url=
(help)
|
|
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「消化器系」「GI」「gastrointestinal」「intestinal」「alimentary system」 |
拡張検索 | 「digestive system neoplasm」 |
関連記事 | 「system」「digestive」 |
器官 | 内 | 中 | 外 |
食道 | 輪筋層 | 縱筋層 | |
噴門部 | 斜筋層 | 輪筋層 | 縱筋層 |
胃体部 | 斜筋層 | 輪筋層 | 縱筋層 |
幽門部 | 斜筋層 | 幽門括約筋 | 縱筋層(発育悪) |
十二指腸 | 輪筋層 | 縱筋層 | |
空腸 | 輪筋層 | 縱筋層 | |
回腸 | 輪筋層 | 縱筋層 | |
結腸 | 輪筋層 | 結腸ひも | |
直腸 | 輪筋層 | 縱筋層 | |
肛門管 | 内肛門括約筋 | 線維弾性板 | |
虫垂 | 輪筋層 | 縦筋層 |
層構造 | 1 | 2 | 3 | 4 | 5 | 6 | ||||||
器官 | 単層扁平上皮 | 単層立方上皮 | 単層円柱上皮 | 角化重層扁平上皮 | 非角化重層扁平上皮 | 上皮表層の構成細胞 | 粘膜固有層 | 腺の構成細胞 | 粘膜筋板 | 粘膜下組織 (大抵、粗結合組織) |
筋層 | 漿膜(結合組織+単層扁平上皮) 外膜(結合組織のみ) |
食道 | ○ | 食道噴門腺 (咽頭付近と胃付近に局在)、粘液腺 |
粘液細胞 (スムーズに食べ物を流す) |
縱層 (縦走筋のみ) |
固有食道腺(粘液腺、管状胞状、ペプシノーゲン、リゾチーム) | 内輪筋層 外縱筋層 (食道上1/3:骨格筋、食道中1/3:骨格筋、平滑筋、食道下1/3:平滑筋) |
外膜(横隔膜まで) 漿膜 | |||||
噴門部 | ○ | 胃表面上皮細胞(杯細胞なし) | 噴門腺、浅い胃小窩 | 胃表面上皮細胞 頚粘液細胞 幹細胞 内分泌細胞 壁細胞 |
内輪層 外縱層 (最外輪層) |
ー | 内斜筋層 中輪筋層 外縱筋層 |
漿膜 | ||||
胃体部 | ○ | 胃表面上皮細胞(杯細胞なし) | 固有胃腺 (管状腺) |
胃表面上皮細胞 頚粘液細胞 壁細胞 幹細胞 主細胞 内分泌細胞 |
内輪層 外縱層 (最外輪層) |
ー | 内斜筋層 中輪筋層 外縱筋層 |
漿膜 | ||||
幽門部 | ○ | 胃表面上皮細胞(杯細胞なし) | 幽門腺、深い胃小窩 | 胃表面上皮細胞 頚粘液細胞 壁細胞 幹細胞 内分泌細胞 |
内輪層 外縱層 (最外輪層) |
ー | 内斜筋層 中輪筋層(幽門括約筋) 外縱筋層(発育悪) |
漿膜 | ||||
十二指腸 | ○(杯細胞) | 吸収上皮細胞 杯細胞(ムチンノーゲン分泌) 内分泌細胞 M細胞 |
腸腺 | 吸収上皮細胞 杯細胞 幹細胞 内分泌細胞 パネート細胞 |
内輪層 外縱層 |
ブルンネル腺 (分枝管状胞状腺、アルカリ性の粘液、ウロガストロン産生) |
内輪筋層 外縱筋層 |
漿膜 外膜(下行部、水平部, see ムーアp143) | ||||
空腸 | ○(杯細胞) | 吸収上皮細胞 杯細胞(ムチンノーゲン分泌) 内分泌細胞 M細胞 |
腸腺 | 吸収上皮細胞 杯細胞 幹細胞 内分泌細胞 パネート細胞 |
内輪層 外縱層 |
ー | 内輪筋層 外縱筋層 |
漿膜 | ||||
回腸 | ○(杯細胞) | 吸収上皮細胞 杯細胞(ムチンノーゲン分泌) 内分泌細胞 M細胞 |
腸腺、パイエル板 | 吸収上皮細胞 杯細胞 幹細胞 内分泌細胞 パネート細胞 |
内輪層 外縱層 |
ー | 内輪筋層 外縱筋層 |
漿膜 | ||||
結腸 | ○(杯細胞) | 吸収上皮細胞 杯細胞(ムチンノーゲン分泌) 内分泌細胞 |
腸腺 | 吸収上皮細胞 杯細胞 幹細胞 内分泌細胞 |
内輪層 外縱層 |
ー | 内輪筋層 外縱筋層は結腸ひもを構成 |
漿膜と外膜 (上行、下行は後腹膜に密着。横行とS字は間膜?) | ||||
直腸 | ○(杯細胞) | 吸収上皮細胞 杯細胞(ムチンノーゲン分泌) 内分泌細胞 |
浅い腸腺 | 吸収上皮細胞 杯細胞 幹細胞 内分泌細胞 パネート細胞 |
内輪層 外縱層 |
ー | 内輪筋層 外縱筋層 |
外膜 | ||||
肛門管 | ○ | ○ | ○ | 肛門柱、肛門周囲腺、肛門においては毛包と脂腺 | 内輪層 外縱層 |
内外痔静脈叢 | 内輪筋層(内肛門括約筋を形成) 外縱筋層 (線維弾性板に移行) |
外膜 | ||||
虫垂 | ○(杯細胞) | 吸収上皮細胞 杯細胞 内分泌細胞 |
浅い腸腺、リンパ小節 | 吸収上皮細胞 杯細胞 幹細胞 内分泌細胞 パネート細胞 |
内輪層 外縱層 |
リンパ小節、脂肪細胞 | 内輪筋層 外縱筋層 |
漿膜 |
.