出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/07/10 03:47:29」(JST)
消化(しょうか、英: digestion)とは、生物が摂取した物質を分解処理して利用可能な栄養素にする過程のことである[1]。消化は、生体の体内や体外、細胞内または細胞外、機械的に破砕する物理的手段やコロイド・分子レベルまで分解する化学的手段などがあり、消化器ごとにも分類される[1]。
一般的な意味での消化は、生物が自分の栄養源となる体外の有機物を吸収するためにより低分子の状態に分解することである。動物や菌類は自分以外の生物やその遺体などの有機物を取り込んで生活している。しかし、それらを構成する有機物には細胞膜を透過するには大きすぎるものが多い。そこで、それらの物質をより低分子に分解しなければならない。この働きが消化である。
消化を行うために、これらの生物はその分解を行う酵素を分泌する。これを消化酵素という。また、酵素の働きを助けるため、あるいはその働きやすい環境を作るために酸などを分泌するものもある。また、有機物の分解をするためには、元の材質が大きい塊であればそれを細片に分けることや、油脂系の物質を懸濁状態にする(乳化)ことなども必要な場合があるので、それらの操作も消化の働きの一部である。
また、一部には自らは消化できないものを分解するために、微生物などを共生させているものがある。この場合、その動物が吸収するのは微生物に分解させた物質であるが、同時に微生物そのものも食料とされている。
消化の過程を得て、糖質はグルコース、タンパク質はアミノ酸、脂肪は脂肪酸・グリセロール・モノアシルグリセロールへとそれぞれ分解される。これはどの動物にほいてもほぼ同じである[1]。
一般に植物は光合成によって栄養を作れるので、食物を必要としない。また、窒素やリンは体外から取り入れる必要があるが、これは最初から無機化合物の状態のものを吸収するので、消化の働きは持たない。しかし、藻類の中には、有機物を取り入れる能力を持つものもある。従属栄養生物である細菌類、菌類、動物などは消化か、それに似た働きを持っている。
消化酵素が体外に分泌され、そこで分解された有機物を吸収する場合を体外消化という。これに対して餌となる物体をまず体内のしかるべき所に取り入れ、そこで消化をおこなうものを体内消化という。個々の細胞に関しても、細胞の外で分解する場合には細胞外消化、細胞内に取り入れてから消化するのを細胞内消化という。
体外消化の場合には、消化は特に決まった部分で行われるわけではないが、体内消化の場合、餌を取り込み、それを蓄え、分解吸収するための構造がある。これを消化器官という。動物一般では、体内に袋があり、体表に続く管によってつながっている。これを消化管といい、一般には腸と呼ばれる。この腸(小腸)上皮の膜部分で行う消化は膜消化・表面消化(接触消化)と言う[1]。
いわゆる腔腸動物と扁形動物などを除けば、消化管の口は2つあって、取り入れる口と消化吸収した残りを排泄する口が分かれる。この、入り口の方を口、出口の方を肛門という。消化管には消化酵素やそれを助ける物質を分泌する器官が付随することが多い。それらは一般には消化腺といわれる。口の周囲には餌の取り込みを助けるために触手や顎、歯などの摂食器官が付属することも多く、それらが機械的消化の一部をになっている場合もある。
単細胞生物や原生生物が体内消化する場合、細胞内消化であることも多い。細胞内消化の場合、細胞が粒子を取り込み、細胞内の袋状の構造に入れ、その膜を通して消化酵素が分泌され、分解された物質は膜を通して吸収される。この袋状の構造を食胞という。同様の働きは、多細胞生物にも見られる場合があり、その場合にはその働きはリソソームが行う。
人間(多細胞レベル)の消化は、食物中の物質(タンパク質、炭水化物、脂肪など)を吸収可能な大きさの分子に分解する工程のことを指す。消化は消化管で数段階に分けて行われ、咀嚼など機械的な分解と、消化酵素などによる化学的な分解がある。
ウシ目(偶蹄目)の動物(ウシ・シカ・ヤギなど)は、多くが一度飲み込んだ食べ物を胃から口中に戻して再び噛む反芻と呼ばれる動作を行う。また4つの胃を持ち、第1胃には繊毛虫と細菌類の微生物が大量に住み、摂取した食物の分解発酵をしている。これらの消化機構により、他の哺乳類が消化吸収できないセルロースなどを栄養として取り込むことが出来る。
ウサギ類は、食糞と呼ばれる行動をする。これは、「軟糞」と呼ばれる特殊な糞を排泄し、これを食べる行動のことである。軟糞は食べ物が盲腸の中で発酵してできたもので、蛋白質やビタミンなどを豊富に含んでいる。
テンジクネズミも同様の食糞をおこなう。カバ、コアラなどでは子供が親の軟糞状の糞を摂食し、離乳食的な役割を果たすほか、盲腸内の微生物を受け渡す役割もあるとされている。
ほとんどの鳥類は歯を持たないが、植物を食べる鳥類の多くは食道が発達した砂嚢と呼ばれる袋を持っており、そこで砂と食べ物をこすり合わせることによって機械的な分解を行う。鳥が砂などを食べるのは、砂嚢に入れるためである。
草食恐竜の大半は、歯を持ってはいたものの、体の大きさに比べれば貧弱な歯と咀嚼筋しかなかった。鳥類同様、砂嚢があり、そこで胃石(体に応じて大きく、砂というより石である)を使って消化した。
体外消化とは、捕えた獲物に消化液を注入し、消化された液体状物を吸い取る方法であり、細胞外消化の一種に入る[1]。一部の昆虫(タガメやゲンゴロウ、アリジゴクなど)やクモ類などが行う。
渦虫類などは、口腔から胃までを反転させて体外に出し、食物を包んで消化する。これはあくまで消化管による消化である[1]。クサリヘビ科に主に見られる出血毒は、消化液が変化したものだと考えられ、筋肉や血液を破壊し消化するのに役立つ。
尚、ヒトが食物を摂取する前に道具や火を用いてより食べ易い形に加工する「調理」も、食物を生のまま、あるいは丸のまま食べるよりも体内での消化をし易くする行為であり、広義の体外消化だとする見方もできる。
植物の繊維分であるセルロースやリグニンは多糖類であるが分解が難しく、このような繊維からエネルギーを得ることは困難である。ワラジムシ類やカタツムリなどの一部の動物は自力で完全にセルロースを分解する能力を持つが、多くの草食性の多細胞生物はそのような能力を持たない。そのため、セルロースを消化するために消化管の中にセルロースを分解する微生物を共生させて化学的分解を行わせる必要がある。また、ウシ目では繊毛虫が、シロアリでは多鞭毛虫・超鞭毛虫がその役割を補っている。
生きた葉を食べる動物のなかには、生きた細胞質のみを利用し、繊維質を利用する事を放棄して、それをそのままに糞として放出するものもある。また、植物遺体を餌とするものには、実際にはそれに含まれる菌類や細菌を消化吸収しているものがある。これらについては分解者を参照。
菌類の消化能力は幅広く、菌類全体に付いて言えば、他の生物が分解できない非常に多くの有機物を分解することができる。細菌類には、さらに特殊な物質を分解する能力を持つものがある。
食虫植物は、動物とはやや異なるものの同じような消化機構を持つ。
細胞内における消化は、細胞内消化と呼ばれる。
白血球の単球や血管外のマクロファージは細菌などの大きな異物を細胞内に取り込んで消化する。ただしこの場合、栄養摂取の役割はほとんどない[1]。リソソームは細胞小器官のひとつで、リパーゼなど多種の酵素をその中に蓄えており、細胞内の他の場所から運ばれてきた物質を分解する、細胞消化のための重要な器官である。
原生動物など単細胞性の動物的生物は、食物を細胞内の小さな空洞に取り込み消化を行う[1]。この空洞を食胞と言う。食胞の膜からは消化酵素が分泌され、分解物は膜を通じて吸収されるものと考えられる。残った物質は体外に放出される。これはリソソームと相同なものであるとも考えられている。
[ヘルプ] |
この項目は、医学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(プロジェクト:医学/Portal:医学と医療)。 |
Digestive system | |
---|---|
Details | |
Latin | systema digestorium |
Anatomical terminology |
Digestion is the breakdown of large insoluble food molecules into small water-soluble food molecules so that they can be absorbed into the watery blood plasma. In certain organisms, these smaller substances are absorbed through the small intestine into the blood stream. Digestion is a form of catabolism that is often divided into two processes based on how food is broken down: mechanical and chemical digestion. The term mechanical digestion refers to the physical breakdown of large pieces of food into smaller pieces which can subsequently be accessed by digestive enzymes. In chemical digestion, enzymes break down food into the small molecules the body can use.
In the human digestive system, food enters the mouth and mechanical digestion of the food starts by the action of mastication (chewing), a form of mechanical digestion, and the wetting contact of saliva. Saliva, a liquid secreted by the salivary glands, contains salivary amylase, an enzyme which starts the digestion of starch in the food; the saliva also contains mucus, which lubricates the food, and hydrogen carbonate, which provides the ideal conditions of pH (alkaline) for amylase to work. After undergoing mastication and starch digestion, the food will be in the form of a small, round slurry mass called a bolus. It will then travel down the esophagus and into the stomach by the action of peristalsis. Gastric juice in the stomach starts protein digestion. Gastric juice mainly contains hydrochloric acid and pepsin. As these two chemicals may damage the stomach wall, mucus is secreted by the stomach, providing a slimy layer that acts as a shield against the damaging effects of the chemicals. At the same time protein digestion is occurring, mechanical mixing occurs by peristalsis, which is waves of muscular contractions that move along the stomach wall. This allows the mass of food to further mix with the digestive enzymes.
After some time (typically 1–2 hours in humans, 4–6 hours in dogs, 3–4 hours in house cats),[citation needed] the resulting thick liquid is called chyme. When the pyloric sphincter valve opens, chyme enters the duodenum where it mixes with digestive enzymes from the pancreas and bile juice from liver and then passes through the small intestine, in which digestion continues. When the chyme is fully digested, it is absorbed into the blood. 95% of absorption of nutrients occurs in the small intestine. Water and minerals are reabsorbed back into the blood in the colon (large intestine) where the pH is slightly acidic about 5.6 ~ 6.9. Some vitamins, such as biotin and vitamin K (K2MK7) produced by bacteria in the colon are also absorbed into the blood in the colon. Waste material is eliminated from the rectum during defecation.[1]
Digestive systems take many forms. There is a fundamental distinction between internal and external digestion. External digestion developed earlier in evolutionary history, and most fungi still rely on it.[2] In this process, enzymes are secreted into the environment surrounding the organism, where they break down an organic material, and some of the products diffuse back to the organism. Animals have a tube (gastrointestinal tract) in which internal digestion occurs, which is more efficient because more of the broken down products can be captured, and the internal chemical environment can be more efficiently controlled.[3]
Some organisms, including nearly all spiders, simply secrete biotoxins and digestive chemicals (e.g., enzymes) into the extracellular environment prior to ingestion of the consequent "soup". In others, once potential nutrients or food is inside the organism, digestion can be conducted to a vesicle or a sac-like structure, through a tube, or through several specialized organs aimed at making the absorption of nutrients more efficient.
Bacteria use several systems to obtain nutrients from other organisms in the environments.
In a channel transupport system, several proteins form a contiguous channel traversing the inner and outer membranes of the bacteria. It is a simple system, which consists of only three protein subunits: the ABC protein, membrane fusion protein (MFP), and outer membrane protein (OMP)[specify]. This secretion system transports various molecules, from ions, drugs, to proteins of various sizes (20 - 900 kDa). The molecules secreted vary in size from the small Escherichia coli peptide colicin V, (10 kDa) to the Pseudomonas fluorescens cell adhesion protein LapA of 900 kDa.[4]
One molecular syringe is used through which a bacterium (e.g. certain types of Salmonella, Shigella, Yersinia) can inject nutrients into protist cells. One such mechanism was first discovered in Y. pestis and showed that toxins could be injected directly from the bacterial cytoplasm into the cytoplasm of its host's cells rather than simply be secreted into the extracellular medium.[5]
The conjugation machinery of some bacteria (and archaeal flagella) is capable of transporting both DNA and proteins. It was discovered in Agrobacterium tumefaciens, which uses this system to introduce the Ti plasmid and proteins into the host, which develops the crown gall (tumor).[6] The VirB complex of Agrobacterium tumefaciens is the prototypic system.[7]
The nitrogen fixing Rhizobia are an interesting case, wherein conjugative elements naturally engage in inter-kingdom conjugation. Such elements as the Agrobacterium Ti or Ri plasmids contain elements that can transfer to plant cells. Transferred genes enter the plant cell nucleus and effectively transform the plant cells into factories for the production of opines, which the bacteria use as carbon and energy sources. Infected plant cells form crown gall or root tumors. The Ti and Ri plasmids are thus endosymbionts of the bacteria, which are in turn endosymbionts (or parasites) of the infected plant.
The Ti and Ri plasmids are themselves conjugative. Ti and Ri transfer between bacteria uses an independent system (the tra, or transfer, operon) from that for inter-kingdom transfer (the vir, or virulence, operon). Such transfer creates virulent strains from previously avirulent Agrobacteria.
In addition to the use of the multiprotein complexes listed above, Gram-negative bacteria possess another method for release of material: the formation of outer membrane vesicles.[8][9] Portions of the outer membrane pinch off, forming spherical structures made of a lipid bilayer enclosing periplasmic materials. Vesicles from a number of bacterial species have been found to contain virulence factors, some have immunomodulatory effects, and some can directly adhere to and intoxicate host cells. While release of vesicles has been demonstrated as a general response to stress conditions, the process of loading cargo proteins seems to be selective.[10]
The gastrovascular cavity functions as a stomach in both digestion and the distribution of nutrients to all parts of the body. Extracellular digestion takes place within this central cavity, which is lined with the gastrodermis, the internal layer of epithelium. This cavity has only one opening to the outside that functions as both a mouth and an anus: waste and undigested matter is excreted through the mouth/anus, which can be described as an incomplete gut.
In a plant such as the Venus Flytrap that can make its own food through photosynthesis, it does not eat and digest its prey for the traditional objectives of harvesting energy and carbon, but mines prey primarily for essential nutrients (nitrogen and phosphorus in particular) that are in short supply in its boggy, acidic habitat.[11]
A phagosome is a vacuole formed around a particle absorbed by phagocytosis. The vacuole is formed by the fusion of the cell membrane around the particle. A phagosome is a cellular compartment in which pathogenic microorganisms can be killed and digested. Phagosomes fuse with lysosomes in their maturation process, forming phagolysosomes. In humans, Entamoeba histolytica can phagocytose red blood cells.[12]
To aid in the digestion of their food animals evolved organs such as beaks, tongues, teeth, a crop, gizzard, and others.
Birds have bony beaks that are specialised according to the bird's ecological niche. For example, macaws primarily eat seeds, nuts, and fruit, using their impressive beaks to open even the toughest seed. First they scratch a thin line with the sharp point of the beak, then they shear the seed open with the sides of the beak.
The mouth of the squid is equipped with a sharp horny beak mainly made of cross-linked proteins. It is used to kill and tear prey into manageable pieces. The beak is very robust, but does not contain any minerals, unlike the teeth and jaws of many other organisms, including marine species.[13] The beak is the only indigestible part of the squid.
The tongue is skeletal muscle on the floor of the mouth that manipulates food for chewing (mastication) and swallowing (deglutition). It is sensitive and kept moist by saliva. The underside of the tongue is covered with a smooth mucous membrane. The tongue also has a touch sense for locating and positioning food particles that require further chewing. The tongue is utilized to roll food particles into a bolus before being transported down the esophagus through peristalsis.
The sublingual region underneath the front of the tongue is a location where the oral mucosa is very thin, and underlain by a plexus of veins. This is an ideal location for introducing certain medications to the body. The sublingual route takes advantage of the highly vascular quality of the oral cavity, and allows for the speedy application of medication into the cardiovascular system, bypassing the gastrointestinal tract.
Teeth (singular tooth) are small whitish structures found in the jaws (or mouths) of many vertebrates that are used to tear, scrape, milk and chew food. Teeth are not made of bone, but rather of tissues of varying density and hardness, such as enamel, dentine and cementum. Human teeth have a blood and nerve supply which enables proprioception. This is the ability of sensation when chewing, for example if we were to bite into something too hard for our teeth, such as a chipped plate mixed in food, our teeth send a message to our brain and we realise that it cannot be chewed, so we stop trying.
The shapes, sizes and numbers of types of animals' teeth are related to their diets. For example, herbivores have a number of molars which are used to grind plant matter, which is difficult to digest. Carnivores have canine teeth which are used to kill and tear meat.
A crop, or croup, is a thin-walled expanded portion of the alimentary tract used for the storage of food prior to digestion. In some birds it is an expanded, muscular pouch near the gullet or throat. In adult doves and pigeons, the crop can produce crop milk to feed newly hatched birds.[14]
Certain insects may have a crop or enlarged esophagus.
Herbivores have evolved cecums (or an abomasum in the case of ruminants). Ruminants have a fore-stomach with four chambers. These are the rumen, reticulum, omasum, and abomasum. In the first two chambers, the rumen and the reticulum, the food is mixed with saliva and separates into layers of solid and liquid material. Solids clump together to form the cud (or bolus). The cud is then regurgitated, chewed slowly to completely mix it with saliva and to break down the particle size.
Fibre, especially cellulose and hemi-cellulose, is primarily broken down into the volatile fatty acids, acetic acid, propionic acid and butyric acid in these chambers (the reticulo-rumen) by microbes: (bacteria, protozoa, and fungi). In the omasum, water and many of the inorganic mineral elements are absorbed into the blood stream.
The abomasum is the fourth and final stomach compartment in ruminants. It is a close equivalent of a monogastric stomach (e.g., those in humans or pigs), and digesta is processed here in much the same way. It serves primarily as a site for acid hydrolysis of microbial and dietary protein, preparing these protein sources for further digestion and absorption in the small intestine. Digesta is finally moved into the small intestine, where the digestion and absorption of nutrients occurs. Microbes produced in the reticulo-rumen are also digested in the small intestine.
Regurgitation has been mentioned above under abomasum and crop, referring to crop milk, a secretion from the lining of the crop of pigeons and doves with which the parents feed their young by regurgitation.[15]
Many sharks have the ability to turn their stomachs inside out and evert it out of their mouths in order to get rid of unwanted contents (perhaps developed as a way to reduce exposure to toxins).
Other animals, such as rabbits and rodents, practise coprophagia behaviours - eating specialised faeces in order to re-digest food, especially in the case of roughage. Capybara, rabbits, hamsters and other related species do not have a complex digestive system as do, for example, ruminants. Instead they extract more nutrition from grass by giving their food a second pass through the gut. Soft faecal pellets of partially digested food are excreted and generally consumed immediately. They also produce normal droppings, which are not eaten.
Young elephants, pandas, koalas, and hippos eat the faeces of their mother, probably to obtain the bacteria required to properly digest vegetation. When they are born, their intestines do not contain these bacteria (they are completely sterile). Without them, they would be unable to get any nutritional value from many plant components.
An earthworm's digestive system consists of a mouth, pharynx, esophagus, crop, gizzard, and intestine. The mouth is surrounded by strong lips, which act like a hand to grab pieces of dead grass, leaves, and weeds, with bits of soil to help chew. The lips break the food down into smaller pieces. In the pharynx, the food is lubricated by mucus secretions for easier passage. The esophagus adds calcium carbonate to neutralize the acids formed by food matter decay. Temporary storage occurs in the crop where food and calcium carbonate are mixed. The powerful muscles of the gizzard churn and mix the mass of food and dirt. When the churning is complete, the glands in the walls of the gizzard add enzymes to the thick paste, which helps chemically breakdown the organic matter. By peristalsis, the mixture is sent to the intestine where friendly bacteria continue chemical breakdown. This releases carbohydrates, protein, fat, and various vitamins and minerals for absorption into the body.
In most vertebrates, digestion is a multistage process in the digestive system, starting from ingestion of raw materials, most often other organisms. Ingestion usually involves some type of mechanical and chemical processing. Digestion is separated into four steps:
Underlying the process is muscle movement throughout the system through swallowing and peristalsis. Each step in digestion requires energy, and thus imposes an "overhead charge" on the energy made available from absorbed substances. Differences in that overhead cost are important influences on lifestyle, behavior, and even physical structures. Examples may be seen in humans, who differ considerably from other hominids (lack of hair, smaller jaws and musculature, different dentition, length of intestines, cooking, etc.).
The major part of digestion takes place in the small intestine. The large intestine primarily serves as a site for fermentation of indigestible matter by gut bacteria and for resorption of water from digests before excretion.
In mammals, preparation for digestion begins with the cephalic phase in which saliva is produced in the mouth and digestive enzymes are produced in the stomach. Mechanical and chemical digestion begin in the mouth where food is chewed, and mixed with saliva to begin enzymatic processing of starches. The stomach continues to break food down mechanically and chemically through churning and mixing with both acids and enzymes. Absorption occurs in the stomach and gastrointestinal tract, and the process finishes with defecation.[1]
The human gastrointestinal tract is around 9 meters long. Food digestion physiology varies between individuals and upon other factors such as the characteristics of the food and size of the meal, and the process of digestion normally takes between 24 and 72 hours.[16]
Different phases of digestion take place including: the cephalic phase , gastric phase, and intestinal phase. The cephalic phase occurs at the sight, thought and smell of food, which stimulate the cerebral cortex. Taste and smell stimuli are sent to the hypothalamus and medulla oblongata. After this it is routed through the vagus nerve and release of acetylcholine. Gastric secretion at this phase rises to 40% of maximum rate. Acidity in the stomach is not buffered by food at this point and thus acts to inhibit parietal (secretes acid) and G cell (secretes gastrin) activity via D cell secretion of somatostatin. The gastric phase takes 3 to 4 hours. It is stimulated by distension of the stomach, presence of food in stomach and decrease in pH. Distention activates long and myenteric reflexes. This activates the release of acetylcholine, which stimulates the release of more gastric juices. As protein enters the stomach, it binds to hydrogen ions, which raises the pH of the stomach. Inhibition of gastrin and gastric acid secretion is lifted. This triggers G cells to release gastrin, which in turn stimulates parietal cells to secrete gastric acid. Gastric acid is about 0.5% hydrochloric acid (HCl), which lowers the pH to the desired pH of 1-3. Acid release is also triggered by acetylcholine and histamine. The intestinal phase has two parts, the excitatory and the inhibitory. Partially digested food fills the duodenum. This triggers intestinal gastrin to be released. Enterogastric reflex inhibits vagal nuclei, activating sympathetic fibers causing the pyloric sphincter to tighten to prevent more food from entering, and inhibits local reflexes.
Digestion begins in the mouth with the secretion of saliva and its digestive enzymes. Food is formed into a bolus by the mechanical mastication and swallowed into the esophagus from where it enters the stomach through the action of peristalsis. Gastric juice contains hydrochloric acid and pepsin which would damage the walls of the stomach and mucus is secreted for protection. In the stomach further release of enzymes break down the food further and this is combined with the churning action of the stomach. The partially digested food enters the duodenum as a thick semi-liquid chyme. In the small intestine, the larger part of digestion takes place and this is helped by the secretions of bile, pancreatic juice and intestinal juice. The intestinal walls are lined with villi, and their epithelial cells is covered with numerous microvilli to improve the absorption of nutrients by increasing the surface area of the intestine.
In the large intestine the passage of food is slower to enable fermentation by the gut flora to take place. Here water is absorbed and waste material stored as feces to be removed by defecation via the anal canal and anus.
This section requires expansion with: digestion of other substances. (August 2011) |
Protein digestion occurs in the stomach and duodenum in which 3 main enzymes, pepsin secreted by the stomach and trypsin and chymotrypsin secreted by the pancreas, break down food proteins into polypeptides that are then broken down by various exopeptidases and dipeptidases into amino acids. The digestive enzymes however are mostly secreted as their inactive precursors, the zymogens. For example, trypsin is secreted by pancreas in the form of trypsinogen, which is activated in the duodenum by enterokinase to form trypsin. Trypsin then cleaves proteins to smaller polypeptides.
Digestion of some fats can begin in the mouth where lingual lipase breaks down some short chain lipids into diglycerides. However fats are mainly digested in the small intestine.[17] The presence of fat in the small intestine produces hormones that stimulate the release of pancreatic lipase from the pancreas and bile from the liver which helps in the emulsification of fats for absorption of fatty acids.[17] Complete digestion of one molecule of fat (a triglyceride) results in 3 fatty acid molecules and one glycerol molecule.[17]
In humans, dietary starches are composed of glucose units arranged in long chains called amylose, a polysaccharide. During digestion, bonds between glucose molecules are broken by salivary and pancreatic amylase, resulting in progressively smaller chains of glucose. This results in simple sugars glucose and maltose (2 glucose molecules) that can be absorbed by the small intestine.
Lactase is an enzyme that breaks down the disaccharide lactose to its component parts, glucose and galactose. Glucose and galactose can be absorbed by the small intestine. Approximately 65 percent of the adult population produce only small amounts of lactase and are unable to eat unfermented milk-based foods. This is commonly known as lactose intolerance. Lactose intolerance varies widely by ethnic heritage; more than 90 percent of peoples of east Asian descent are lactose intolerant, in contrast to about 5 percent of people of northern European descent. [18]
Sucrase is an enzyme that breaks down the disaccharide sucrose, commonly known as table sugar, cane sugar, or beet sugar. Sucrose digestion yields the sugars fructose and glucose which are readily absorbed by the small intestine.
DNA and RNA are broken down into mononucleotides by the nucleases deoxyribonuclease and ribonuclease (DNase and RNase) from the pancreas.
Some nutrients are complex molecules (for example vitamin B12) which would be destroyed if they were broken down into their functional groups. To digest vitamin B12 non-destructively, haptocorrin in saliva strongly binds and protects the B12 molecules from stomach acid as they enter the stomach and are cleaved from their protein complexes.[19]
After the B12-haptocorrin complexes pass from the stomach via the pylorus to the duodenum, pancreatic proteases cleave haptocorrin from the B12 molecules which rebind to intrinsic factor (IF). These B12-IF complexes travel to the ileum portion of the small intestine where cubilin receptors enable assimilation and circulation of B12-IF complexes in the blood.[20]
There are at least five hormones that aid and regulate the digestive system in mammals. There are variations across the vertebrates, as for instance in birds. Arrangements are complex and additional details are regularly discovered. For instance, more connections to metabolic control (largely the glucose-insulin system) have been uncovered in recent years.
Digestion is a complex process controlled by several factors. pH plays a crucial role in a normally functioning digestive tract. In the mouth, pharynx, and esophagus, pH is typically about 6.8, very weakly acidic. Saliva controls pH in this region of the digestive tract. Salivary amylase is contained in saliva and starts the breakdown of carbohydrates into monosaccharides. Most digestive enzymes are sensitive to pH and will denature in a high or low pH environment.
The stomach's high acidity inhibits the breakdown of carbohydrates within it. This acidity confers two benefits: it denatures proteins for further digestion in the small intestines, and provides non-specific immunity, damaging or eliminating various pathogens.[citation needed]
In the small intestines, the duodenum provides critical pH balancing to activate digestive enzymes. The liver secretes bile into the duodenum to neutralize the acidic conditions from the stomach, and the pancreatic duct empties into the duodenum, adding bicarbonate to neutralize the acidic chyme, thus creating a neutral environment. The mucosal tissue of the small intestines is alkaline with a pH of about 8.5.[citation needed]
Library resources about Digestive system |
|
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「infusion」「alimentary」「温浸」「digest」「digestive」 |
拡張検索 | 「protein digestion and absorption test」 |
.