血管内皮増殖因子 vascular endothelial growth factor
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/05/16 01:59:57」(JST)
血管内皮細胞増殖因子(けっかんないひさいぼうぞうしょくいんし)は、脈管形成(胚形成期に、血管がないところに新たに血管がつくられること)および血管新生(既存の血管から分枝伸長して血管を形成すること)に関与する一群の糖タンパク。英語の vascular endothelial growth factor から VEGF(ブイイージーエフ)と呼ばれることが多い。その他、血管内皮細胞成長因子、血管内皮増殖因子、血管内皮成長因子などと呼ばれることもある。VEGFは主に血管内皮細胞表面にある血管内皮細胞増殖因子受容体 (VEGFR) にリガンドとして結合し、細胞分裂や遊走、分化を刺激したり、微小血管の血管透過性を亢進させたりする働きをもつが、その他単球・マクロファージの活性化にも関与する。正常な体の血管新生に関わる他、腫瘍の血管形成や転移など、悪性化の過程にも関与している。
1983年マウス腹水から血管透過性を亢進させる物質として発見され[1]、1989年ウシ濾胞星状細胞の培養液から45 kDa(キロダルトン)の糖タンパクとしてVEGF-Aが単離、クローニングされた[2]。
脈管形成や血管新生、リンパ管新生に関与する増殖因子にはVEGF-A、VEGF-B、VEGF-C、VEGF-D、VEGF-E、PlGF(胎盤増殖因子 placental growth factor)-1、PlGF-2の7つがあり、これらはまとめて「VEGFファミリー」と呼ばれる。単にVEGFと呼んでVEGF-Aを指すこともある。 さらにいくつかのVEGFファミリーメンバーは、オルタナティブスプライシング(Alternative splicing)によりいくつかの亜型が存在する。例えばVEGF-Aは、ヒトでは通常アミノ酸数が121個 (VEGF-A121)、165個 (VEGF-A165)、189個 (VEGF-A189)、206個 (VEGF-A206)の4種類が存在する[3]他、VEGF-A145、VEGF-A183といった稀な亜型も報告されている[4]。VEGF-BにはVEGF-B167、VEGF-B186が知られている。
7つのVEGFファミリーメンバーはそれぞれ異なった遺伝子を持つ。ヒトVEGF-A遺伝子は6番染色体短腕 (6p12) に存在し[5]、8つのエクソンからなる。ヒトVEGF-B遺伝子は11番染色体長腕 (11q13) に存在する[6]。VEGF-Cは4番染色体長腕 (4q34.1-q34.3) に[7]、VEGF-DはX染色体短腕 (Xp22.31) に[8]存在する。PlGFは14番染色体長腕 (14q24-q31) に存在する[9]
7つのVEGFファミリーメンバーはそれぞれ決まったVEGF受容体に結合する。VEGF-AはVEGFR-2(別名KDR、マウスではFlk-1)およびVEGFR-1(別名Flt-1)に、VEGF-BとPlGF-1、PlGF-2はVEGFR1に、VEGF-CとVEGF-DはVEGFR-2およびVEGFR-3(別名Flt-4)に、VEGF-EはVEGFR2に結合する。VEGFR-2はほとんど全ての内皮細胞表面に発現しているが、VEGFR-1およびVEGFR-3は特定の一部の内皮細胞に発現しているのみである。これら内皮細胞表面の受容体にVEGFが結合すると、受容体のチロシンキナーゼが活性化して細胞内にシグナルが伝達され、細胞の機能や構造に変化を与える。 VEGFR-2はVEGF-Aの大部分と結合して血管新生、脈管形成に働き、VEGFR-1は血管新生に関与する他、単球走化作用などに関与する。VEGFR-3はリンパ管新生に関与する[10]。
VEGF-A遺伝子のホモ欠損マウスまたはヘテロ欠損マウスは、脈管形成不全および心血管系の発達異常のために胎生期に死亡し[11]、VEGF-Aは胎生期の発達に必須のものである。一方VEGF-BおよびPIGF欠損マウスは胎生期の脈管形成障害や発達異常をきたさない。VEGF-C遺伝子のホモ欠損マウスは胎生期に死亡し、ヘテロ欠損マウスは出生後にリンパ管の発達異常をきたす。
腫瘍細胞や腫瘍間質は拡散による栄養だけでは不十分で壊死してしまうので、VEGFを産生して血管を腫瘍に引き込み、栄養や酸素を取り込もうとする。 VEGFの過剰発現は腫瘍の血管増生や転移と関連し、また腫瘍の進行や予後不良と相関することが、大腸癌[12][13]、胃癌[14][15]、肺癌[16][17][18]など様々な癌で報告され、VEGFを標的にした分子標的治療が進められている。
ベバシツマブ(Bevacizumab、商品名アバスチン®)はVEGFのいずれのアイソフォームも認識可能なモノクローナル抗体であり、VEGFに結合してVEGFの働きを阻害する[19]。日本国内では2007年に承認を受け、大腸癌や非小細胞肺癌の治療に用いられる。
Vascular endothelial growth factor (VEGF), originally known as vascular permeability factor (VPF),[1] is a signal protein produced by cells that stimulates vasculogenesis and angiogenesis. It is part of the system that restores the oxygen supply to tissues when blood circulation is inadequate. Serum concentration of VEGF is high in bronchial asthma and diabetes mellitus.[2] VEGF's normal function is to create new blood vessels during embryonic development, new blood vessels after injury, muscle following exercise, and new vessels (collateral circulation) to bypass blocked vessels.
When VEGF is overexpressed, it can contribute to disease. Solid cancers cannot grow beyond a limited size without an adequate blood supply; cancers that can express VEGF are able to grow and metastasize. Overexpression of VEGF can cause vascular disease in the retina of the eye and other parts of the body. Drugs such as bevacizumab and ranibizumab can inhibit VEGF and control or slow those diseases.
VEGF is a sub-family of growth factors, to be specific, the platelet-derived growth factor family of cystine-knot growth factors. They are important signaling proteins involved in both vasculogenesis (the de novo formation of the embryonic circulatory system) and angiogenesis (the growth of blood vessels from pre-existing vasculature).
VEGF was first identified in guinea pigs, hamsters, and mice by Senger et al. in 1983.[1] It was purified and cloned by Ferrara and Henzel in 1989.[3] VEGF alternative splicing was discovered by Tischer et al. in 1991.[4] Between 1996 and 1997, Christinger and De Vos obtained the crystal structure of VEGF, first at 2.5 Å resolution and later at 1.9 Å.[5][6][7]
Fms-like tyrosine kinase-1 (flt-1) was shown to be a VEGF receptor by Ferrara et al. in 1992.[8] The kinase insert domain receptor (KDR) was shown to be a VEGF receptor by Terman et al. in 1992 as well.[9] In 1998, neuropilin 1 and neuropilin 2 were shown to act as VEGF receptors.[10]
The VEGF family comprises in mammals five members: VEGF-A, placenta growth factor (PGF), VEGF-B, VEGF-C and VEGF-D. The latter ones were discovered later than VEGF-A, and, before their discovery, VEGF-A was called just VEGF. A number of VEGF-related proteins encoded by viruses (VEGF-E) and in the venom of some snakes (VEGF-F) have also been discovered.
Type | Function |
---|---|
VEGF-A |
|
VEGF-B | Embryonic angiogenesis (myocardial tissue, to be specific)[11] |
VEGF-C | Lymphangiogenesis |
VEGF-D | Needed for the development of lymphatic vasculature surrounding lung bronchioles |
PlGF | Important for Vasculogenesis, Also needed for angiogenesis during ischemia, inflammation, wound healing, and cancer. |
Activity of VEGF-A, as its name implies, has been studied mostly on cells of the vascular endothelium, although it does have effects on a number of other cell types (e.g., stimulation monocyte/macrophage migration, neurons, cancer cells, kidney epithelial cells). In vitro, VEGF-A has been shown to stimulate endothelial cell mitogenesis and cell migration. VEGF-A is also a vasodilator and increases microvascular permeability and was originally referred to as vascular permeability factor.
There are multiple isoforms of VEGF-A that result from alternative splicing of mRNA from a single, 8-exon VEGFA gene. These are classified into two groups which are referred to according to their terminal exon (exon 8) splice site: the proximal splice site (denoted VEGFxxx) or distal splice site (VEGFxxxb). In addition, alternate splicing of exon 6 and 7 alters their heparin-binding affinity and amino acid number (in humans: VEGF121, VEGF121b, VEGF145, VEGF165, VEGF165b, VEGF189, VEGF206; the rodent orthologs of these proteins contain one fewer amino acids). These domains have important functional consequences for the VEGF splice variants, as the terminal (exon 8) splice site determines whether the proteins are pro-angiogenic (proximal splice site, expressed during angiogenesis) or anti-angiogenic (distal splice site, expressed in normal tissues). In addition, inclusion or exclusion of exons 6 and 7 mediate interactions with heparan sulfate proteoglycans (HSPGs) and neuropilin co-receptors on the cell surface, enhancing their ability to bind and activate the VEGF receptors (VEGFRs).[12] Recently, VEGF-C has been shown to be an important inducer of neurogenesis in the murine subventricular zone, without exerting angiogenic effects.[13]
All members of the VEGF family stimulate cellular responses by binding to tyrosine kinase receptors (the VEGFRs) on the cell surface, causing them to dimerize and become activated through transphosphorylation, although to different sites, times, and extents. The VEGF receptors have an extracellular portion consisting of 7 immunoglobulin-like domains, a single transmembrane spanning region, and an intracellular portion containing a split tyrosine-kinase domain. VEGF-A binds to VEGFR-1 (Flt-1) and VEGFR-2 (KDR/Flk-1).[15] VEGFR-2 appears to mediate almost all of the known cellular responses to VEGF. The function of VEGFR-1 is less well-defined, although it is thought to modulate VEGFR-2 signaling.[16] Another function of VEGFR-1 may be to act as a dummy/decoy receptor, sequestering VEGF from VEGFR-2 binding (this appears to be particularly important during vasculogenesis in the embryo). VEGF-C and VEGF-D, but not VEGF-A, are ligands for a third receptor (VEGFR-3/Flt4), which mediates lymphangiogenesis. The receptor (VEGFR3) is the site of binding of main ligands (VEGFC and VEGFD), which mediates perpetual action and function of ligands on target cells. Vascular endothelial growth factor-C can stimulate lymphangiogenesis (via VEGFR3) and angiogenesis via VEGFR2. Vascular endothelial growth factor-R3 has been detected in lymphatic endothelial cells in CL of many species, cattle, buffalo and primate.[17]
VEGF-A production can be induced in cells that are not receiving enough oxygen.[15] When a cell is deficient in oxygen, it produces HIF, hypoxia-inducible factor, a transcription factor. HIF stimulates the release of VEGF-A, among other functions (including modulation of erythropoiesis). Circulating VEGF-A then binds to VEGF Receptors on endothelial cells, triggering a Tyrosine Kinase Pathway leading to angiogenesis. The expression of angiopoietin-2 in the absence of VEGF leads to endothelial cell death and vascular regression.[18] Conversely, a German study done in vivo found that VEGF concentrations actually decreased after a 25% reduction in oxygen intake for 30 minutes.[19] HIF1 alpha and HIF1 beta are constantly being produced but HIF1 alpha is highly O2 labile, so, in aerobic conditions, it is degraded. When the cell becomes hypoxic, HIF1 alpha persists and the HIF1alpha/beta complex stimulates VEGF release.
VEGF-A has been implicated with poor prognosis in breast cancer. Numerous studies show a decreased overall survival and disease-free survival in those tumors overexpressing VEGF. The overexpression of VEGF-A may be an early step in the process of metastasis, a step that is involved in the "angiogenic" switch. Although VEGF-A has been correlated with poor survival, its exact mechanism of action in the progression of tumors remains unclear.
VEGF-A is also released in rheumatoid arthritis in response to TNF-α, increasing endothelial permeability and swelling and also stimulating angiogenesis (formation of capillaries).
VEGF-A is also important in diabetic retinopathy (DR). The microcirculatory problems in the retina of people with diabetes can cause retinal ischaemia, which results in the release of VEGF-A, and a switch in the balance of pro-angiogenic VEGFxxx isoforms over the normally expressed VEGFxxxb isoforms. VEGFxxx may then cause the creation of new blood vessels in the retina and elsewhere in the eye, heralding changes that may threaten the sight.
VEGF-A plays a role in the disease pathology of the wet form age-related macular degeneration (AMD), which is the leading cause of blindness for the elderly of the industrialized world. The vascular pathology of AMD shares certain similarities with diabetic retinopathy, although the cause of disease and the typical source of neovascularization differs between the two diseases.
VEGF-D serum levels are significantly elevated in patients with angiosarcoma.[20]
Once released, VEGF-A may elicit several responses. It may cause a cell to survive, move, or further differentiate. Hence, VEGF is a potential target for the treatment of cancer. The first anti-VEGF drug, a monoclonal antibody named bevacizumab, was approved in 2004. Approximately 10-15% of patients benefit from bevacizumab therapy; however, biomarkers for bevacizumab efficacy are not yet known.
Current studies show that VEGFs are not the only promoters of angiogenesis. In particular, FGF2 and HGF are potent angiogenic factors.
Patients suffering from pulmonary emphysema have been found to have decreased levels of VEGF in the pulmonary arteries.
In the kidney, increased expression of VEGF-A in glomeruli directly causes the glomerular hypertrophy that is associated with proteinuria.[21]
VEGF alterations can be predictive of early-onset pre-eclampsia.[22]
Anti-VEGF therapies are important in the treatment of certain cancers and in age-related macular degeneration. They can involve monoclonal antibodies such as bevacizumab (Avastin), antibody derivatives such as ranibizumab (Lucentis), or orally-available small molecules that inhibit the tyrosine kinases stimulated by VEGF: lapatinib (Tykerb/Tyverb), sunitinib (Sutent), sorafenib (Nexavar), axitinib, and pazopanib. (Some of these therapies target VEGF receptors rather than the VEGFs.) THC and cannabidiol both inhibit VEGF and slow Glioma growth.[citation needed]
Both antibody-based compounds are commercialized. The first three orally available compounds are commercialized, as well. The latter two (axitinib and pazopanib) are in clinical trials.
Bergers and Hanahan concluded in 2008 that anti-VEGF drugs can show therapeutic efficacy in mouse models of cancer and in an increasing number of human cancers. But, "the benefits are at best transitory and are followed by a restoration of tumour growth and progression."[23]
Later studies into the consequences of VEGF inhibitor use have shown that, although they can reduce the growth of primary tumours, VEGF inhibitors can concomitantly promote invasiveness and metastasis of tumours.[24][25]
AZ2171 (cediranib), a multi-targeted tyrosine kinase inhibitor has been shown to have anti-edema effects by reducing the permeability and aiding in vascular normalization.
A 2014 Cochrane Systematic Review studied the effectiveness of ranibizumab and pegaptanib, on patients suffering from macular edema caused by central retinal vein occlusion.[26] Participants on both treatment groups showed improvement in visual acuity measures and a reduction in macular edema symptoms over six months.[26]
VEGF is also inhibited by thiazolidinediones (used for diabetes mellitus type 2 and related disease), and this effect on granulosa cells gives the potential of thiazolidinediones to be used in ovarian hyperstimulation syndrome.[27]
Ranibizumab, a monoclonal antibody fragment (Fab) derived from bevacizumab, has been developed by Genetech for intraocular use. In 2006, FDA approved the drug for the treatment of neovascular age-related macular degeneration (wet AMD). The drug had undergone three successful clinical trials by then.[28]
In the October 2006 issue of the New England Journal of Medicine (NEJM), Rosenfield, et al. reported that monthly intravitreal injection of ranibizumab led to significant increase in the level of mean visual acuity compared to that of sham injection. It was concluded from the two-year, phase III study that ranibizumab is very effective in the treatment of minimally classic (MC) or occult wet AMD (age-related macular degeneration) with low rates of ocular adverse effects.[29]
Another study published in the January 2009 issue of Ophthalmology provides the evidence for the efficacy of ranibizumab. Brown, et al. reported that monthly intravitreal injection of ranibizumab led to significant increase in the level of mean visual acuity compared to that of photodynamic therapy with verteporfin. It was concluded from the two year, phase III study that ranibizumab was superior to photodynamic therapy with verteporfin in the treatment of predominantly classic (PC) Wet AMD with low rates of ocular adverse effects.[30]
Although the efficacy of ranibizumab is well-supported by extensive clinical trials,[citation needed] the cost effectiveness of the drug is questioned. Since the drug merely stabilizes patient conditions, ranibizumab must be administered monthly. At a cost of $2,000.00 per injection, the cost to treat wet AMD patients in the United States is greater than $10.00 billion per year. Due to high cost, many ophthalmologists have turned to bevacizumab as the alternative intravitreal agent in the treatment of wet AMD. The drug costs $15.00 to 50.00 in the United States.
In 2007, Raftery, et al. reported in the British Journal of Ophthalmology that, unless ranibizumab is 2.5 times more effective the bevacizumab, ranibizumab is not cost-effective. It was concluded that the price of ranibizumab would have to be drastically reduced for the drug to be cost-effective.[31]
Off-label use of intravitreal bevacizumab has become a widespread treatment for neovascular age-related macular degeneration.[32] Although the drug is not FDA-approved for non-oncologic uses, some studies[which?] suggest that bevacizumab is effective in increasing visual acuity with low rates of ocular adverse effects. However, due to small sample size and lack of randomized control trial, the result is not conclusive.
In October 2006, the National Eye Institute (NEI) of the National Institutes of Health (NIH) announced that it would fund a comparative study trial of ranibizumab and bevacizumab to assess the relative efficacy and ocular adversity in treating wet AMD. This study, called the Comparison of Age-Related Macular Degeneration Treatment Trials (CATT Study), will enroll about 1,200 patients with newly diagnosed wet AMD, randomly assigning the patients to different treatment groups.[citation needed]
By May 2012, anti-VEGF treatment with Avastin has been accepted by Medicare, is quite reasonably priced, and effective. Lucentis has a similar but smaller molecular structure to Avastin, and is FDA-approved (2006) for treating MacD, yet remains more costly, as is the more recent (approved in 2011) EYLEA (aflibercept). Tests on these treatments are ongoing relative to the efficacy of one over another.
|author-separator=
(help)|author-separator=
(help)|author-separator=
(help)|author-separator=
(help)
|
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「卵巣過剰刺激症候群」「血管新生阻害薬」「血管内皮増殖因子」「成長因子」「bFGF」 |
拡張検索 | 「VEGF-A」「VEGFR-1」「VEGF-B」「VEGF-C」 |
血管新生阻害剤 angiogenesis : 約 77 件 血管新生阻害薬 angiogenesis : 約 83 件
血管内皮細胞増殖因子 : 約 33,200 件 血管内皮増殖因子 : 約 503,000 件 血管内皮増殖因子 : 約 93 件 血管内皮成長因子 : 約 81 件
発育因子 : 約 8,070 件 成長因子 : 約 675,000 件 増殖因子 : 約 1,290,000 件 発育因子 growth : 約 12,100 件 成長因子 growth : 約 319,000 件 増殖因子 growth : 約 157,000 件
.