出典(authority):フリー百科事典『ウィキペディア（Wikipedia）』「2016/06/29 12:04:19」(JST)
Deductive reasoning, also deductive logic, logical deduction is the process of reasoning from one or more statements (premises) to reach a logically certain conclusion.^{[1]} It differs from inductive reasoning and abductive reasoning.
Deductive reasoning links premises with conclusions. If all premises are true, the terms are clear, and the rules of deductive logic are followed, then the conclusion reached is necessarily true.
Deductive reasoning (topdown logic) contrasts with inductive reasoning (bottomup logic) in the following way: In deductive reasoning, a conclusion is reached reductively by applying general rules that hold over the entirety of a closed domain of discourse, narrowing the range under consideration until only the conclusion(s) is left. In inductive reasoning, the conclusion is reached by generalizing or extrapolating from specific cases to general rules, i.e., there is epistemic uncertainty. However, the inductive reasoning mentioned here is not the same as induction used in mathematical proofs – mathematical induction is actually a form of deductive reasoning.
An example of a deductive argument:
The first premise states that all objects classified as "men" have the attribute "mortal". The second premise states that "Socrates" is classified as a "man" – a member of the set "men". The conclusion then states that "Socrates" must be "mortal" because he inherits this attribute from his classification as a "man".
The law of detachment (also known as affirming the antecedent and Modus ponens) is the first form of deductive reasoning. A single conditional statement is made, and a hypothesis (P) is stated. The conclusion (Q) is then deduced from the statement and the hypothesis. The most basic form is listed below:
In deductive reasoning, we can conclude Q from P by using the law of detachment.^{[2]} However, if the conclusion (Q) is given instead of the hypothesis (P) then there is no definitive conclusion.
The following is an example of an argument using the law of detachment in the form of an ifthen statement:
Since the measurement of angle A is greater than 90° and less than 180°, we can deduce that A is an obtuse angle. If however, we are given the conclusion that A is an obtuse angle we cannot deduce the premise that A = 120°.
The law of syllogism takes two conditional statements and forms a conclusion by combining the hypothesis of one statement with the conclusion of another. Here is the general form:
The following is an example:
We deduced the final statement by combining the hypothesis of the first statement with the conclusion of the second statement. We also allow that this could be a false statement. This is an example of the transitive property in mathematics. The transitive property is sometimes phrased in this form:
The law of contrapositive states that, in a conditional, if the conclusion is false, then the hypothesis must be false also. The general form is the following:
The following are examples:
Deductive arguments are evaluated in terms of their validity and soundness.
An argument is “valid” if it is impossible for its premises to be true while its conclusion is false. In other words, the conclusion must be true if the premises are true. An argument can be “valid” even if one or more of its premises are false.
An argument is “sound” if it is valid and the premises are true.
It is possible to have a deductive argument that is logically valid but is not sound. Fallacious arguments often take that form.
The following is an example of an argument that is “valid”, but not “sound”:
The example’s first premise is false – there are people who eat carrots who are not quarterbacks – but the conclusion would necessarily be true, if the premises were true. In other words, it is impossible for the premises to be true and the conclusion false. Therefore, the argument is “valid”, but not “sound”. False generalizations – such as “Everyone who eats carrots is a quarterback” – are often used to make unsound arguments. The fact that there are some people who eat carrots but are not quarterbacks proves the flaw of the argument.
In this example, the first statement uses categorical reasoning, saying that all carroteaters are definitely quarterbacks. This theory of deductive reasoning – also known as term logic – was developed by Aristotle, but was superseded by propositional (sentential) logic and predicate logic.
Deductive reasoning can be contrasted with inductive reasoning, in regards to validity and soundness. In cases of inductive reasoning, even though the premises are true and the argument is “valid”, it is possible for the conclusion to be false (determined to be false with a counterexample or other means).
This section requires expansion. (January 2015) 
Aristotle started documenting deductive reasoning in the 4th century BC.^{[3]}
Deductive reasoning is generally considered^{[by whom?]} to be a skill that develops without any formal teaching or training. As a result of this belief, deductive reasoning skills are not taught in secondary schools, where students are expected to use reasoning more often and at a higher level.^{[4]} It is in high school, for example, that students have an abrupt introduction to mathematical proofs – which rely heavily on deductive reasoning.^{[4]}
Logic portal  
Web portal 
In one sense [...] one can see the psychology of deductive reasoning as being as old as the study of logic, which originated in the writings of Aristotle.
Wikiquote has quotations related to: Deductive reasoning 
Look up deductive reasoning in Wiktionary, the free dictionary. 
Wikiversity has learning materials about Deductive Logic 




リンク元  「elicit」「draw」「derive」「引き出す」 
拡張検索  「reduced NAD」「reduced nicotinamideadenine dinucleotide」「filtration under reduced pressure」 