出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/11/03 13:25:02」(JST)
スピロヘータ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
梅毒トレポネーマ
|
||||||||||||
分類 | ||||||||||||
|
||||||||||||
学名 | ||||||||||||
Spirochaetales Buchanan 1917 |
||||||||||||
下位分類(科) | ||||||||||||
|
スピロヘータ(またはスピロケータ、spirochaetaまたはspirochetes)とは、らせん状の形態をしたグラム陰性の真正細菌の一グループである。学名の由来は「コイル状の髪」を意味するギリシア語をラテン語に音写したもので、ラテン語の厳密な発音では「スピーロカエタ」である。
他の典型的な細菌とは異なり、菌体の最外側にエンベロープと呼ばれる被膜構造を持ち、それが細胞体と鞭毛を覆っている。細胞壁が薄くて比較的柔軟であり、鞭毛の働きによって、菌体をくねらせたりコルク抜きのように回転しながら活発に運動する。
自然環境のいたるところに見られる常在菌の一種でもある。一部のスピロヘータはヒトに対して病原性を持つものがあり、梅毒、回帰熱、ライム病などの病原体がこれに該当する。またシロアリや木材食性のゴキブリの消化管に生息するスピロヘータは、腸内細菌として宿主が摂った難分解性の食物から栄養素を摂取したり、エネルギーを産生する役割にかかわっている可能性が指摘されている。
細菌の形態には、球型のもの(球菌)や棒状のもの(桿菌)の他に、桿菌と同様に細長い菌体がらせん形になったものが存在し、これらはらせん菌と総称される。 らせん菌はその回転数から、(1) 回転数が1回程度のもの、(2) 2-3回のもの、(3)5回以上(-数百回)のものに区別される。1に該当するものにはコレラ菌などのビブリオ属が、2に該当するものにはスピリルム、カンピロバクター、ヘリコバクターが挙げられ、3に該当する細くて回転数の多いものが俗にスピロヘータと総称される。
スピロヘータは以前、真正細菌とは異なる別の微生物として考えられていたが、その後、研究が進むにつれて真正細菌の一グループをなすものであることが判明した。2005年現在の細菌の分類では、スピロヘータは独立した門として扱われており、以下、スピロヘータ綱スピロヘータ目スピロヘータ科スピロヘータ属という、属のレベルまでが存在しているが、一般にはこの中で、スピロヘータ目に属するものすべてを指す場合が多い。
2012年現在、スピロヘータは以下のような位置づけにある。ただしスピロヘータの分類はまだ整理の途上にあり、今後変更される可能性がある。
グラム陰性のらせん菌であり、そのらせん形態は科や属ごとにそれぞれ特徴がある。一般には0.1-0.5×4-250 µm程度の細長い菌体がらせん状になっているものが多いが、中には500-600µmほどの大型のものもある。
スピロヘータは他の真正細菌とは異なる独特の構造を持ち、その基本構造は、細胞体、鞭毛、エンベロープという3つから構成される。菌体の両端からそれぞれ伸びた鞭毛に、ちょうど菌体(細胞体)がらせん状に巻き付くような恰好となり、それらすべてをエンベロープと呼ばれる被膜構造が覆った状態になっている。このため他の鞭毛を持つ細菌とは異なり、鞭毛が直接外部の環境に接することはない。このような特徴から、スピロヘータの鞭毛は、軸糸 (axial filament)、細胞内鞭毛 (endoflagella)、ペリプラズム鞭毛、軸繊維などとも呼ばれる。
スピロヘータの細胞壁は薄いため細胞体は柔軟であり、またエンベロープも流動性に富んでいる。この柔軟性と鞭毛の働きによって、スピロヘータは活発な運動性を示す。スピロヘータの鞭毛は、他の原核生物の鞭毛と同様、菌体と接する部分を基点にして回転しているが、この鞭毛の回転によって鞭毛と接している細胞体とエンベロープも回転し、菌体全体がコルク抜きのように回転することで、前方への推進力を得る。他の生物の鞭毛による運動の場合は、粘度の高い溶液の中では鞭毛を動かせずに運動が停止するが、スピロヘータのこの回転運動の場合は粘稠な溶液中でも運動することが可能である。また、この回転運動以外にも、鞭毛の働きと菌体の柔軟性によって、スピロヘータは屈曲したり、固体の表面を這うように移動したりすることも可能である。
この他、属ごとに他の細菌にはあまり見られない特徴を有するものも見られる。例えばトレポネーマ属やレプトネーマ属には細胞体の中に細胞内微小管と呼ばれる、真核細胞の微小管とよく似た構造が見られる。ボレリアの細胞膜には動物細胞の膜脂質成分であるコレステロールが含まれており、この点でマイコプラズマと類似した特徴を持つ。またボレリアの中には、他のほとんどの真正細菌のゲノムが環状DNAであるのに対して、線状DNAをゲノムとして持っているものがある。
ゴキブリやシロアリの多くは窒素含有量が著しく低く、また難分解性の高分子化合物を主成分とする、朽木などの腐植質を主食としている。こうした食物は動物の生理的能力では十分利用することが難しいため、これらの昆虫は原生動物、担子菌、細菌といった微生物との共生系を発達させている。
スピロヘータはゴキブリやシロアリの腸内における微生物との共生系の中にも確認されているが、その機能は十分に解明されているとはいいがたい。しかし、オーストラリアに分布する最も原始的なシロアリであるムカシシロアリ Mastotermes darwiniensis では、非常に興味深い現象が確認されている。ゴキブリやシロアリの腸内のスピロヘータには自由生活するものと、共生原生動物に付着して生活するものがあるが、ムカシシロアリの腸に共生している多鞭毛虫の一種 Mixotricha paradoxa の細胞の表面には50万個体前後ものスピロヘータが付着してあたかも繊毛のように見え、実際に繊毛のような波うち運動を行っている。
M. paradoxa は運動をこの体表におびただしく付着したスピロヘータの運動に依存していることが知られている。この現象は細胞内小器官の起源の細胞内共生説を唱えたリン・マーギュリスの関心を引き、鞭毛(繊毛・波動毛)のスピロヘータ共生起源説のアイディアを引き出した。しかし、真核生物の鞭毛構造とスピロヘータの構造に著しい差があることなどから、ミトコンドリアや葉緑体の共生起源説のようには受け入れられて、定説化してはいない。真核生物の鞭毛の形成中心となっている中心体に独自の遺伝子があるという説が過去に提唱されたが、現在ではほぼ否定されている。今後鞭毛の起源に細胞内共生説が再浮上する可能性は完全には否定できないが、今日ではスピロヘータの共生体がそのまま鞭毛となったとみなすのは困難であると認識されている。
最初に微生物を発見したことで知られるレーウェンフックが、1683年9月にイギリスの王立協会に送ったスケッチに、スピロヘータ様のらせん菌が描かれており、細菌発見の当初からその存在は知られていた。
スピロヘータという名称は1835年にEhrenbergが水中から見出したらせん菌につけたものが最初である。
病原性のスピロヘータとして最初に同定されたのは回帰熱ボレリアで、1873年のObermeierの発見による。
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「マクロライド系抗菌薬」 |
拡張検索 | 「梅毒トレポネーマ」「トレポネーマ・デンティコラ」「熱帯菌種トレポネーマ」「非トレポネーマ抗原検査」 |
-Treponema pallidum
.