出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2017/08/15 07:07:12」(JST)
This scientific article needs additional citations to secondary or tertiary sources such as review articles, monographs, or textbooks. Please add references to provide context and establish notability for any primary research articles cited. Unsourced material may be challenged and removed. (October 2015) |
In computing, an opcode (abbreviated from operation code, also known as instruction syllable, instruction parcel or opstring[1][2][3][4][5][6][7]) is the portion of a machine language instruction that specifies the operation to be performed. Beside the opcode itself, most instructions also specify the data they will process, in the form of operands. In addition to opcodes used in the instruction set architectures of various CPUs, which are hardware devices, they can also be used in abstract computing machines as part of their byte code specifications.
Specifications and format of the opcodes are laid out in the instruction set architecture (ISA) of the processor in question, which may be a general CPU or a more specialized processing unit.[citation needed] Apart from the opcode itself, an instruction normally also has one or more specifiers for operands (i.e. data) on which the operation should act, although some operations may have implicit operands, or none at all.[citation needed] There are instruction sets with nearly uniform fields for opcode and operand specifiers, as well as others (the x86 architecture for instance) with a more complicated, variable-length structure.[8][better source needed]
Depending on architecture, the operands may be register values, values in the stack, other memory values, I/O ports, etc., specified and accessed using more or less complex addressing modes.[citation needed] The types of operations include arithmetics, data copying, logical operations, and program control, as well as special instructions (such as CPUID and others).[citation needed]
Assembly language, or just assembly, is a low-level programming language, which uses mnemonics, instructions and operands to represent machine code.[citation needed] This enhances the readability while still giving precise control over the machine instructions. Most programming is currently done using high-level programming languages,[9] which are typically easier to read and write.[citation needed] These languages need to be compiled (translated into assembly language), or run through other compiled programs.[10]
Opcodes can also be found in so-called byte codes and other representations intended for a software interpreter rather than a hardware device. These software-based instruction sets often employ slightly higher-level data types and operations than most hardware counterparts, but are nevertheless constructed along similar lines. Examples include the byte code found in Java class files which are then interpreted by the Java Virtual Machine (JVM), the byte code used in GNU Emacs for compiled LISP code, .NET Common Intermediate Language (CIL), and many others.[11]
x86 assembly topics
|
|
---|---|
Topics |
|
Assemblers |
|
Programming issues |
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
関連記事 | 「operation」「code」「coding」「cod」 |
.