出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/05/10 23:38:37」(JST)
In electronics and telecommunications a transmitter or radio transmitter is an electronic device which, with the aid of an antenna, produces radio waves. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves. In addition to their use in broadcasting, transmitters are necessary component parts of many electronic devices that communicate by radio, such as cell phones, wireless computer networks, Bluetooth enabled devices, garage door openers, two-way radios in aircraft, ships, and spacecraft, radar sets, and navigational beacons. The term transmitter is usually limited to equipment that generates radio waves for communication purposes; or radiolocation, such as radar and navigational transmitters. Generators of radio waves for heating or industrial purposes, such as microwave ovens or diathermy equipment, are not usually called transmitters even though they often have similar circuits.
The term is popularly used more specifically to refer to a broadcast transmitter, a transmitter used in broadcasting, as in FM radio transmitter or television transmitter. This usage usually includes both the transmitter proper, the antenna, and often the building it is housed in.
An unrelated use of the term is in industrial process control, where a "transmitter" is a telemetry device which converts measurements from a sensor into a signal, and sends it, usually via wires, to be received by some display or control device located a distance away.
Contents
|
A transmitter can be a separate piece of electronic equipment, or an electrical circuit within another electronic device. A transmitter and receiver combined in one unit is called a transceiver. The term transmitter is often abbreviated "XMTR" or "TX" in technical documents. The purpose of most transmitters is radio communication of information over a distance. The information is provided to the transmitter in the form of an electronic signal, such as an audio (sound) signal from a microphone, a video (TV) signal from a video camera, or in wireless networking devices a digital signal from a computer. The transmitter combines the information signal to be carried with the radio frequency signal which generates the radio waves, which is often called the carrier. This process is called modulation. The information can be added to the carrier in several different ways, in different types of transmitter. In an amplitude modulation (AM) transmitter, the information is added to the radio signal by varying its amplitude. In a frequency modulation (FM) transmitter, it is added by varying the radio signal's frequency slightly. Many other types of modulation are used.
The antenna may be enclosed inside the case or attached to the outside of the transmitter, as in portable devices such as cell phones, walkie-talkies, and garage door openers. In more powerful transmitters, the antenna may be located on top of a building or on a separate tower, and connected to the transmitter by a feed line, that is a transmission line.
Radio transmitters
Consumer products that contain transmitters
In most parts of the world, use of transmitters is strictly controlled by law because of the potential for dangerous interference with other radio transmissions (for example to emergency communications). Transmitters must be licensed by governments, under a variety of license classes depending on use: (broadcast, marine radio, Airband, Amateur etc.), and are restricted to certain frequencies and power levels. In some classes each transmitter is given a unique call sign consisting of a string of letters and numbers which must be used as an identifier in transmissions. The operator of the transmitter usually must hold a government license, such as a general radiotelephone operator license, which is obtained by passing a test demonstrating adequate technical and legal knowledge of safe radio operation.
An exception is made allowing the unlicensed use of low-power short-range transmitters in devices such as cell phones, cordless telephones, wireless microphones, walkie-talkies, Wifi and Bluetooth devices, garage door openers, and baby monitors. In the US, these fall under Part 15 of the Federal Communications Commission (FCC) regulations. Although they can be operated without a license, these devices still generally must be type-approved before sale.
A radio transmitter is an electronic circuit which transforms electric power from a battery or electrical mains into a radio frequency alternating current, which reverses direction millions to billions of times per second. The energy in such a rapidly-reversing current can radiate off a conductor (the antenna) as electromagnetic waves (radio waves). The transmitter also "piggybacks" information, such as an audio or video signal, onto the radio frequency current to be carried by the radio waves. When they strike the antenna of a radio receiver, the waves excite similar (but less powerful) radio frequency currents in it. The radio receiver extracts the information from the received waves. A practical radio transmitter usually consists of these parts:
In higher frequency transmitters, in the UHF and microwave range, oscillators that operate stably at the output frequency cannot be built. In these transmitters the oscillator usually operates at a lower frequency, and is multiplied by frequency multipliers to get a signal at the desired frequency.
The first primitive radio transmitters (called Hertzian oscillators) were built by German physicist Heinrich Hertz in 1887 during his pioneering investigations of radio waves. These generated radio waves by a high voltage spark between two conductors. These spark-gap transmitters were used during the first three decades of radio (1887-1917), called the wireless telegraphy era. They couldn't transmit audio and instead transmitted information by telegraphy, the operator spelling out text messages in Morse code. Short-lived competing techniques came into use after the turn of the century, such as the Alexanderson alternator and Poulsen Arc transmitters. But all these early technologies were replaced by vacuum tube transmitters in the 1920s, because they were inexpensive and produced continuous waves, which could be modulated to transmit audio (sound) using amplitude modulation (AM) and frequency modulation (FM). This made possible commercial AM radio broadcasting, which began in about 1920. The current form of FM transmission was invented by Edwin Armstrong in 1933, and the first FM radio station was licensed in 1937. The development of radar during World War II was a great stimulus to the evolution of high frequency transmitters in the UHF and microwave ranges, using new devices such as the magnetron, klystron, and traveling wave tube. In recent years, the need to conserve crowded radio spectrum bandwidth has driven the development of new types of transmitters such as spread spectrum.
Look up transmitter in Wiktionary, the free dictionary. |
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「神経伝達物質」「伝達分子」「情報伝達分子」「情報伝達物質」「トランスミッター」 |
拡張検索 | 「neurotransmitter agent」「plasma membrane neurotransmitter transport protein」「neurotransmitter uptake inhibitor」「uptake inhibitor of neurotransmitter」 |
中枢神経 | 末梢神経 | |
遠心性 | 求心性 | |
グルタミン酸 | アセチルコリン | サブスタンスP |
GABA | ノルエピネフリン | CGRP |
グリシン | (エピネフリン) | |
ドーパミン | ||
エピネフリン | ||
セロトニン | ||
アセチルコリン | ||
ヒスタミン | ||
エンドルフィン | ||
ノシセプチン |
.