出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/12/10 02:44:27」(JST)
L-トリプトファン | |
---|---|
IUPAC名
Tryptophan or (2S)-2-amino-3-(1H-indol-3-yl)propanoic acid |
|
別称
2-Amino-3-(1H-indol-3-yl)propanoic acid
|
|
識別情報 | |
CAS登録番号 | 73-22-3 |
PubChem | 6305 |
ChemSpider | 6066 |
UNII | 8DUH1N11BX |
KEGG | D00020 |
ChEMBL | CHEMBL54976 |
IUPHARリガンド | 717 |
ATC分類 | N06AX02 |
SMILES
|
|
InChI
|
|
特性 | |
化学式 | C11H12N2O2 |
モル質量 | 204.23 g mol−1 |
水への溶解度 | Soluble: 0.23 g/L at °C, 11.4 g/L at 25 °C, |
溶解度 | 熱アルコール、アルカリ水酸化物に溶ける。クロロホルムには溶けない。 |
酸解離定数 pKa | 2.38 (カルボキシル基), 9.39 (アミノ基)[1] |
特記なき場合、データは常温 (25 °C)・常圧 (100 kPa) におけるものである。 |
トリプトファン (Tryptophan) はアミノ酸の一種である。ヒトに置ける9つの必須アミノ酸の内の1つ。
系統名 2-アミノ-3-(インドリル)プロピオン酸。略号はTrpまたはW。
側鎖にインドール環を持ち、芳香族アミノ酸に分類される。蛋白質構成アミノ酸である。糖原性・ケト原性の両方を持つ。多くのタンパク質中に見出されるが、含量は低い。ナイアシンの体内活性物質であるNAD(H)をはじめ、セロトニン・メラトニンといったホルモン、キヌレニン等生体色素、また植物において重要な成長ホルモンであるインドール酢酸の前駆体、インドールアルカロイド(トリプタミン類)などの前駆体として重要である。
トリプトファンの代謝は極めて多様であり、また複雑である。大まかには以下のように分類できる。[2]
代謝経路 | 組織 | 説明 |
---|---|---|
キヌレニン経路 | 肝臓 | インドールアミン酸素添加酵素 (IDO) によりL-キヌレニンを経てキヌレン酸へ至る経路。ヒトで約95%[3]。 |
セロトニン経路 | 腸 脳 |
セロトニン・メラトニンの合成に向かう経路。 |
グルタル酸経路 | 肝臓 | (キヌレニン経路を経て2-アミノ-3-カルボキシムコン酸セミアルデヒドから) エネルギー源としてアセチルCoAへと代謝され完全分解にいたる経路。 (トリプトファンの代謝分解を参照) |
NAD 経路 | 肝臓 | (キヌレニン経路を経てキノリン酸から) NAD の合成に向かう経路 |
トリプタミン経路 | 脱炭酸によりトリプタミンの合成に向かう経路。 | |
インドール経路 | 脱アミノによりインドールピルビン酸の合成に向かう経路。 | |
蛋白質合成 | 全細胞 | タンパク質を構成するアミノ酸のひとつとして使用 |
その他 | 腸内細菌 | 腸内細菌や真菌によりインドールへと合成される経路。 腸内微生物により代謝されたインドール類は腸管のAHR受容体等を経由し、キヌレニン経路のIDOとともに腸管の免疫恒常性の維持に利用される。[4] |
トリプトファンは、ヒトの体内に置いて、概日リズムと関連するセロトニンやメラトニンに代謝される。
ヒトの健康維持にとって欠かせ無い物質であり、かつ、ヒトの体内では十分量が合成出来無い「必須アミノ酸」の1つであって、適量の摂取は精神・神経を落ち着かせるなど、ヒトの健康増進に役立つとされている。
この為、特に改善に役立つとされているのは、不眠症、時差ボケ、うつ病等の疾患であり、米国においてはそれらの症状に処方される場合もある。日本においては、法規上の取り扱いとして成分本質 (原材料) では医薬品でないもの、即ち「医薬品的効果効能を標ぼうしない限り医薬品と判断しない成分本質 (原材料)」に区分されており、現状、国内や海外ではトリプトファンを含むサプリメントが広く流通し販売されている。
しかし、その一方で、トリプトファンもまた多くの栄養素と同様、その過剰摂取に付いて、幾つかの危険性が報告されている。
過剰摂取、或いは他の栄養素や薬品との相互作用で出現する副作用としては、肝硬変の患者に置ける肝性脳症の発症リスク、とりわけトリプトファンはヒトの体内で代謝物のセロトニンを増加させる事から、セロトニン症候群の発症リスクが懸念される。この為、肝硬変の患者へのアミノ酸輸液に付いては、通常の患者に用いる輸液用製剤とは異なる、トリプトファン等の肝性脳症リスクのある物質の配合量を減らした製剤を用いる。
加えて、妊娠中の胎児への影響も報告例があり、1,000mgの摂取で胎児の呼吸不全を招いた懸念が存在する。
更に、過去にはL-トリプトファンを含むサプリメントが好酸球増多筋痛症候群(EMS)を発症させた疑義が在ったが、昭和電工が或る時期に製造した特定の製造ロットの製品を購入した消費者のみにEMSの発症が見られた事から、専門家らで構成された調査委員会の報告では、それらの健康被害はトリプトファンとは別の不純物が原因であるとされた。
基本的には食品中のタンパク質が多いほど多く含まれる。したがって、肉、魚、豆、種子、ナッツ、豆乳や乳製品などに豊富に含まれる。またチョコレート、燕麦、バナナ、ドリアン、マンゴー、ナツメヤシ、牛乳、ヨーグルト、カッテージチーズ、鶏卵、家禽類の肉(ニワトリ、アヒルなど)、ゴマ、ヒヨコマメ、ヒマワリの種、スピルリナ、ラッカセイなどに含まれる、という報告がある[5]。
食品名 | 含有量 (mg) |
---|---|
バナナ | 10 |
牛乳 | 42 |
ヨーグルト | 47 |
豆乳 | 53 |
白米 | 89 |
そば | 192 |
アーモンド | 201 |
肉類 | 150~250 |
糸引納豆 | 242 |
プロセスチーズ | 291 |
ひまわりの種 | 310 |
たらこ | 291 |
すじこ | 331 |
[ヘルプ] |
|access-date=
(help)
|
この項目は、生化学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めています(プロジェクト:化学、プロジェクト:生命科学/Portal:化学、Portal:生物学)。 |
Names | |
---|---|
IUPAC name
Tryptophan or (2S)-2-amino-3-(1H-indol-3-yl)propanoic acid
|
|
Other names
2-Amino-3-(1H-indol-3-yl)propanoic acid
|
|
Identifiers | |
CAS Number
|
73-22-3 Y |
ChEBI | CHEBI:27897 N |
ChEMBL | ChEMBL54976 Y |
ChemSpider | 6066 Y |
DrugBank | DB00150 Y |
InChI
|
|
IUPHAR/BPS
|
717 |
Jmol interactive 3D | Image |
KEGG | D00020 Y |
PubChem | 6305 |
SMILES
|
|
UNII | 8DUH1N11BX Y |
Properties | |
Chemical formula
|
C11H12N2O2 |
Molar mass | 204.23 g·mol−1 |
Solubility in water
|
Soluble: 0.23 g/L at 0 °C, 11.4 g/L at 25 °C, |
Solubility | Soluble in hot alcohol, alkali hydroxides; insoluble in chloroform. |
Acidity (pKa) | 2.38 (carboxyl), 9.39 (amino)[1] |
Pharmacology | |
ATC code | N06AX02 |
Supplementary data page | |
Structure and
properties |
Refractive index (n), Dielectric constant (εr), etc. |
Thermodynamic
data |
Phase behaviour solid–liquid–gas |
Spectral data
|
UV, IR, NMR, MS |
N verify (what is YN ?) | |
Infobox references | |
Tryptophan (IUPAC-IUBMB abbreviation: Trp or W; IUPAC abbreviation: L-Trp or D-Trp; sold for medical use as Tryptan)[2] is one of the 22 standard amino acids and an essential amino acid in the human diet. It is encoded in the standard genetic code as the codon UGG. Only the L-stereoisomer of tryptophan is used in structural or enzyme proteins, but the R-stereoisomer is occasionally found in naturally produced peptides (for example, the marine venom peptide contryphan).[3] The distinguishing structural characteristic of tryptophan is that it contains an indole functional group.
The isolation of tryptophan was first reported by Frederick Hopkins in 1901[4] through hydrolysis of casein. From 600 grams of crude casein one obtains 4-8 grams of tryptophan.[5]
Plants and microorganisms commonly synthesize tryptophan from shikimic acid or anthranilate.[6] The latter condenses with phosphoribosylpyrophosphate (PRPP), generating pyrophosphate as a by-product. After ring opening of the ribose moiety and following reductive decarboxylation, indole-3-glycerinephosphate is produced, which in turn is transformed into indole. In the last step, tryptophan synthase catalyzes the formation of tryptophan from indole and the amino acid serine.
The industrial production of tryptophan is also biosynthetic and is based on the fermentation of serine and indole using either wild-type or genetically modified bacteria such as B. amyloliquefaciens, B. subtilis, C. glutamicum or E. coli. These strains carry either mutations that prevent the reuptake of aromatic amino acids or multiple/overexpressed trp operons. The conversion is catalyzed by the enzyme tryptophan synthase.[7][8][9]
For many organisms (including humans), tryptophan is an essential amino acid. This means that it cannot be synthesized by the organism, it is needed to prevent illness or death, and it therefore must be part of their diet. Amino acids, including tryptophan, act as building blocks in protein biosynthesis, and proteins are required to sustain life. In addition, tryptophan functions as a biochemical precursor for the following compounds (see also figure to the right):
The disorder fructose malabsorption causes improper absorption of tryptophan in the intestine, reduced levels of tryptophan in the blood,[15] and depression.[16] The authors did not find reduced tryptophan in cases of lactose maldigestion.[15]
In bacteria that synthesize tryptophan, high cellular levels of this amino acid activate a repressor protein, which binds to the trp operon.[17] Binding of this repressor to the tryptophan operon prevents transcription of downstream DNA that codes for the enzymes involved in the biosynthesis of tryptophan. So high levels of tryptophan prevent tryptophan synthesis through a negative feedback loop and, when the cell's tryptophan levels are reduced, transcription from the trp operon resumes. The genetic organisation of the trp operon thus permits tightly regulated and rapid responses to changes in the cell's internal and external tryptophan levels.
Tryptophan is a routine constituent of most protein-based foods or dietary proteins. It is particularly plentiful in chocolate, oats, dried dates, milk, yogurt, cottage cheese, red meat, eggs, fish, poultry, sesame, chickpeas, almonds, sunflower seeds, pumpkin seeds, spirulina, bananas, and peanuts. Contrary to the popular belief[18][19][20] that turkey has a particularly high amount of tryptophan, the amount of tryptophan in turkey is typical of most poultry.[21]
Food | Tryptophan [g/100 g of food] |
Protein [g/100 g of food] |
Tryptophan/Protein [%] |
---|---|---|---|
egg white, dried |
|
|
|
spirulina, dried |
|
|
|
cod, atlantic, dried |
|
|
|
soybeans, raw |
|
|
|
cheese, Parmesan |
|
|
|
sesame seed |
|
|
|
cheese, cheddar |
|
|
|
sunflower seed |
|
|
|
pork, chop |
|
|
|
turkey |
|
|
|
chicken |
|
|
|
beef |
|
|
|
oats |
|
|
|
salmon |
|
|
|
lamb, chop |
|
|
|
perch, Atlantic |
|
|
|
chickpeas, raw |
|
|
|
egg |
|
|
|
wheat flour, white |
|
|
|
baking chocolate, unsweetened |
|
|
|
milk |
|
|
|
rice, white, medium-grain, cooked |
|
|
|
quinoa, uncooked |
|
|
|
quinoa, cooked |
|
|
|
potatoes, russet |
|
|
|
tamarind |
|
|
|
banana |
|
|
|
A common assertion in the US is that heavy consumption of turkey meat results in drowsiness, due to high levels of tryptophan contained in turkey.[18][20] However, the amount of tryptophan in turkey is comparable to that contained in most other meats.[19][21] Furthermore, post-meal drowsiness may have more to do with what is consumed along with the turkey, carbohydrates in particular.[23] It has been demonstrated in both animal models[24] and humans[25][26][27] that ingestion of a meal rich in carbohydrates triggers release of insulin. Insulin in turn stimulates the uptake of large neutral branched-chain amino acids (BCAA), but not tryptophan (an aromatic amino acid) into muscle, increasing the ratio of tryptophan to BCAA in the blood stream. The resulting increased tryptophan ratio reduces competition at the large neutral amino acid transporter (which transports both BCAA and aromatic amino acids), resulting in more uptake of tryptophan across the blood–brain barrier into the cerebrospinal fluid (CSF).[28][29] Once in the CSF, tryptophan is converted into serotonin in the raphe nuclei by the normal enzymatic pathway.[24][26] The resultant serotonin is further metabolised into melatonin by the pineal gland.[12] Hence, this data suggests that "feast-induced drowsiness"— or postprandial somnolence — may be the result of a heavy meal rich in carbohydrates, which indirectly increases the production of sleep-promoting melatonin in the brain.[24][25][26][27]
Tryptophan is sold over the counter in the United States, Canada, and the United Kingdom as a dietary supplement for use as an antidepressant, anxiolytic, and sleep aid. It is also marketed in some European countries for the indication of major depression under various trade names.
Since tryptophan is converted into 5-hydroxytryptophan (5-HTP) which is subsequently converted into the neurotransmitter serotonin, it has been proposed that consumption of tryptophan or 5-HTP may therefore improve depression symptoms by increasing the level of serotonin in the brain. In 2001 a Cochrane Review of the effect of 5-HTP and tryptophan on depression was published. The authors included only studies of a high rigor and included both 5-HTP and tryptophan in their review because of the limited data on either. Of 108 studies of 5-HTP and tryptophan on depression published between 1966 and 2000, only two met the authors' quality standards for inclusion, totaling 64 study participants. The substances were more effective than placebo in the two studies included but the authors state that, "the evidence was of insufficient quality to be conclusive," and note, "because alternative antidepressants exist which have been proven to be effective and safe, the clinical usefulness of 5-HTP and tryptophan is limited at present."[30] The use of tryptophan as an adjunctive therapy in addition to standard treatment for mood and anxiety disorders is not supported by the scientific evidence.[31] Due to the lack of high quality studies and preliminary nature of studies showing effectiveness and the lack of adequate study on their safety, the use of tryptophan and 5-HTP is not highly recommended or thought to be clinically useful.[30][31]
There is evidence that blood tryptophan levels are unlikely to be altered by changing the diet,[32] but tryptophan is available in health food stores as a dietary supplement.[33] Consuming purified tryptophan increases brain serotonin whereas eating foods containing tryptophan does not.[34] This is because the transport system which brings tryptophan across the blood-brain barrier is also selective for the other amino acids which are contained in protein food sources.[35] High plasma levels of other large neutral amino acids prevent the plasma concentration of tryptophan from increasing brain concentration levels.[35]
Potential side effects of tryptophan include nausea, diarrhea, drowsiness, lightheadedness, headache, dry mouth, blurred vision, sedation, euphoria, and nystagmus (involuntary eye movements).[36][37] Because tryptophan has not been thoroughly studied in a clinical setting, possible side effects and interactions with other drugs are not well known.[30]
Tryptophan has the potential to cause serotonin syndrome when combined with antidepressants of the MAOI or SSRI class or other strongly serotonergic drugs.[37]
In 1912 Felix Ehrlich demonstrated that yeast attacks the natural amino acids essentially by splitting off carbon dioxide and replacing the amino group with hydroxyl. By this reaction, tryptophan gives rise to tryptophol.[38]
Tryptophan affects brain serotonin synthesis when given orally in a purified form and is used to modify serotonin levels for research in psychology.[34] Low brain serotonin is induced by administration of tryptophan-poor protein in a technique called 'acute tryptophan depletion'.[39] Studies using this method have evaluated the effect of serotonin on mood and social behavior, finding that serotonin reduces aggression and increases agreeableness.[40]
Tryptophan is an important intrinsic fluorescent probe (amino acid), which can be used to estimate the nature of microenvironment of the tryptophan. Most of the intrinsic fluorescence emissions of a folded protein are due to excitation of tryptophan residues.
There was a large outbreak of eosinophilia-myalgia syndrome (EMS) in the U.S. in 1989, with more than 1,500 cases reported to the CDC and at least 37 deaths. After preliminary investigation revealed that the outbreak was linked to intake of tryptophan, the U.S. Food and Drug Administration (FDA) banned most tryptophan from sale in the US in 1991, and other countries followed suit.[41]
Subsequent epidemiological studies suggested that EMS was linked to specific batches of L-tryptophan supplied by a single large Japanese manufacturer, Showa Denko.[41][42][43][44] It eventually became clear that recent batches of Showa Denko's L-tryptophan were contaminated by trace impurities, which were subsequently thought to be responsible for the 1989 EMS outbreak.[41][45][46] However, other evidence suggests that tryptophan itself may be a potentially major contributory factor in EMS.[47]
The FDA loosened its restrictions on sales and marketing of tryptophan in February 2001, but continued to limit the importation of tryptophan not intended for an exempted use until 2005.[41]
The fact that the Showa Denko facility used genetically engineered bacteria to produce the contaminated batches of L-tryptophan later found to have caused the outbreak of eosinophilia-myalgia syndrome has been cited as evidence of a need for "close monitoring of the chemical purity of biotechnology-derived products."[48] Those calling for purity monitoring have, in turn, been criticized as anti-GMO activists who overlook possible non-GMO causes of contamination and threaten the development of biotech.[49]
|
|
|
|
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「トリプトファン」「W」「L-tryptophan」「Trp」 |
拡張検索 | 「tryptophan-tRNA ligase」「tryptophan residue」「methyltryptophan」「tryptophanuria」 |
/\ -CH2-------| ○| || | | \ / \/ NH
.