インターフェロン調節因子-3
- 関
- IRF-3
WordNet
- be a contributing factor; "make things factor into a companys profitability"
- any of the numbers (or symbols) that form a product when multiplied together
- an independent variable in statistics
- anything that contributes causally to a result; "a number of factors determined the outcome"
- consider as relevant when making a decision; "You must factor in the recent developments" (同)factor in, factor out
- resolve into factors; "a quantum computer can factor the number 15" (同)factor in, factor out
- an event known to have happened or something known to have existed; "your fears have no basis in fact"; "how much of the story is fact and how much fiction is hard to tell"
- a concept whose truth can be proved; "scientific hypotheses are not facts"
- a piece of information about circumstances that exist or events that have occurred; "first you must collect all the facts of the case"
- a statement or assertion of verified information about something that is the case or has happened; "he supported his argument with an impressive array of facts"
- any of various controls or devices for regulating or controlling fluid flow, pressure, temperature, etc.
- an official responsible for control and supervision of a particular activity or area of public interest
- an antiviral protein produced by cells that have been invaded by a virus; inhibits replication of the virus
PrepTutorEJDIC
- (…の)『要因』,(…を生み出す)要素《+『in』+『名』(do『ing』)》 / 囲数,約数 / 代理人,《おもに英》仲買人 / =factorize
- 〈C〉『事実』,実際にある(あった)事 / 〈U〉真相,真実(truth) / 《the~》(法律用語で)犯行
- 取り締まり人;調整者 / 調整装置
- インターフェロン(ウイルス増殖抑制物質)
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2014/06/24 18:14:21」(JST)
[Wiki en表示]
Interferon regulatory factor 3 |
PDB rendering based on 1j2f. |
Available structures |
PDB |
Ortholog search: PDBe, RCSB |
List of PDB id codes |
1J2F, 1QWT, 1T2K, 1ZOQ, 2O61, 2O6G, 2PI0, 3A77, 3QU6
|
|
|
Identifiers |
Symbol |
IRF3 |
External IDs |
OMIM: 603734 MGI: 1859179 HomoloGene: 1208 GeneCards: IRF3 Gene |
Gene ontology |
Molecular function |
• regulatory region DNA binding
• DNA binding
• sequence-specific DNA binding transcription factor activity
• transcription cofactor activity
• protein binding
• identical protein binding
• protein homodimerization activity
|
Cellular component |
• nucleus
• nucleoplasm
• cytoplasm
• cytosol
|
Biological process |
• toll-like receptor signaling pathway
• MyD88-independent toll-like receptor signaling pathway
• transcription from RNA polymerase II promoter
• induction of apoptosis
• response to DNA damage stimulus
• virus-host interaction
• cytokine-mediated signaling pathway
• negative regulation of type I interferon production
• positive regulation of type I interferon production
• positive regulation of interferon-alpha production
• positive regulation of interferon-beta production
• toll-like receptor 3 signaling pathway
• toll-like receptor 4 signaling pathway
• TRIF-dependent toll-like receptor signaling pathway
• MDA-5 signaling pathway
• innate immune response
• defense response to virus
• interferon-gamma-mediated signaling pathway
• type I interferon-mediated signaling pathway
• macrophage apoptotic process
|
Sources: Amigo / QuickGO |
|
RNA expression pattern |
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
|
Entrez |
3661 |
54131 |
|
Ensembl |
ENSG00000126456 |
ENSMUSG00000003184 |
|
UniProt |
Q14653 |
P70671 |
|
RefSeq (mRNA) |
NM_001197122 |
NM_016849 |
|
RefSeq (protein) |
NP_001184051 |
NP_058545 |
|
Location (UCSC) |
Chr 19:
50.16 – 50.17 Mb |
Chr 7:
45 – 45 Mb |
|
PubMed search |
[1] |
[2] |
|
|
Interferon regulatory factor 3, also known as IRF3, is an interferon regulatory factor.[1]
Contents
- 1 Function
- 2 Interactions
- 3 References
- 4 Further reading
- 5 External links
Function
IRF3 is a member of the interferon regulatory transcription factor (IRF) family.[1] IRF3 was originally discovered as a homolog of IRF1 and IRF2. IRF3 has been further characterized and shown to contain several functional domains including a nuclear export signal, a DNA-binding domain, a C-terminal IRF association domain and several regulatory phosphorylation sites.[2] IRF3 is found in an inactive cytoplasmic form that upon serine/threonine phosphorylation forms a complex with CREBBP.[3] This complex translocates to the nucleus and activates the transcription of interferons alpha and beta, as well as other interferon-induced genes.[4]
IRF3 plays an important role in the innate immune system's response to viral infection.[5] Aggregated MAVS have been found to activate IRF3 dimerization.[6]
Signaling pathway of toll-like receptors. Dashed grey lines represent unknown associations
Interactions
IRF3 has been shown to interact with IRF7.[7]
References
- ^ a b Hiscott J, Pitha P, Genin P, Nguyen H, Heylbroeck C, Mamane Y, Algarte M, Lin R (1999). "Triggering the interferon response: the role of IRF-3 transcription factor". J. Interferon Cytokine Res. 19 (1): 1–13. doi:10.1089/107999099314360. PMID 10048763.
- ^ Lin, R.; Heylbroeck, C.; Genin, P.; Pitha, PM.; Hiscott, J. (Feb 1999). "Essential Role of Interferon Regulatory Factor 3 in Direct Activation of RANTES Chemokine Transcription". Mol Cell Biol 19 (2): 959–66. PMC 116027. PMID 9891032.
- ^ Yoneyama M, Suhara W, Fujita T (2002). "Control of IRF-3 activation by phosphorylation". J. Interferon Cytokine Res. 22 (1): 73–6. doi:10.1089/107999002753452674. PMID 11846977.
- ^ "Entrez Gene: IRF3 interferon regulatory factor 3".
- ^ Collins, SE.; Noyce, RS.; Mossman, KL. (Feb 2004). "Innate Cellular Response to Virus Particle Entry Requires IRF3 but Not Virus Replication". J Virol 78 (4): 1706–17. doi:10.1128/JVI.78.4.1706-1717.2004. PMC 369475. PMID 14747536.
- ^ Hou, F; Sun, L; Zheng, H; Skaug, B; Jiang, QX; Chen, ZJ (Aug 5, 2011). "MAVS Forms Functional Prion-Like Aggregates To Activate and Propagate Antiviral Innate Immune Response". Cell 146 (3): 448–61. doi:10.1016/j.cell.2011.06.041. PMC 3179916. PMID 21782231.
- ^ Au, W C; Yeow W S; Pitha P M (Feb 2001). "Analysis of functional domains of interferon regulatory factor 7 and its association with IRF-3". Virology (United States) 280 (2): 273–82. doi:10.1006/viro.2000.0782. ISSN 0042-6822. PMID 11162841.
Further reading
- Pitha PM, Au WC, Lowther W, et al. (1999). "Role of the interferon regulatory factors (IRFs) in virus-mediated signaling and regulation of cell growth". Biochimie 80 (8–9): 651–8. doi:10.1016/S0300-9084(99)80018-2. PMID 9865487.
- Yoneyama M, Suhara W, Fujita T (2002). "Control of IRF-3 activation by phosphorylation". J. Interferon Cytokine Res. 22 (1): 73–6. doi:10.1089/107999002753452674. PMID 11846977.
- Au WC, Moore PA, Lowther W, et al. (1996). "Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes". Proc. Natl. Acad. Sci. U.S.A. 92 (25): 11657–61. doi:10.1073/pnas.92.25.11657. PMC 40461. PMID 8524823.
- Yoneyama M, Suhara W, Fukuhara Y, et al. (1998). "Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300". EMBO J. 17 (4): 1087–95. doi:10.1093/emboj/17.4.1087. PMC 1170457. PMID 9463386.
- Weaver BK, Kumar KP, Reich NC (1998). "Interferon Regulatory Factor 3 and CREB-Binding Protein/p300 Are Subunits of Double-Stranded RNA-Activated Transcription Factor DRAF1". Mol. Cell. Biol. 18 (3): 1359–68. PMC 108849. PMID 9488451.
- Lin R, Heylbroeck C, Pitha PM, Hiscott J (1998). "Virus-Dependent Phosphorylation of the IRF-3 Transcription Factor Regulates Nuclear Translocation, Transactivation Potential, and Proteasome-Mediated Degradation". Mol. Cell. Biol. 18 (5): 2986–96. PMC 110678. PMID 9566918.
- Ronco LV, Karpova AY, Vidal M, Howley PM (1998). "Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity". Genes Dev. 12 (13): 2061–72. doi:10.1101/gad.12.13.2061. PMC 316980. PMID 9649509.
- Bellingham J, Gregory-Evans K, Gregory-Evans CY (1999). "Mapping of human interferon regulatory factor 3 (IRF3) to chromosome 19q13.3-13.4 by an intragenic polymorphic marker". Annals of Human Genetics 62 (Pt 3): 231–4. doi:10.1046/j.1469-1809.1998.6230231.x. PMID 9803267.
- Lowther WJ, Moore PA, Carter KC, Pitha PM (1999). "Cloning and functional analysis of the human IRF-3 promoter". DNA Cell Biol. 18 (9): 685–92. doi:10.1089/104454999314962. PMID 10492399.
- Kim T, Kim TY, Song YH, et al. (1999). "Activation of interferon regulatory factor 3 in response to DNA-damaging agents". J. Biol. Chem. 274 (43): 30686–9. doi:10.1074/jbc.274.43.30686. PMID 10521456.
- Kumar KP, McBride KM, Weaver BK, et al. (2000). "Regulated Nuclear-Cytoplasmic Localization of Interferon Regulatory Factor 3, a Subunit of Double-Stranded RNA-Activated Factor 1". Mol. Cell. Biol. 20 (11): 4159–68. doi:10.1128/MCB.20.11.4159-4168.2000. PMC 85785. PMID 10805757.
- Suhara W, Yoneyama M, Iwamura T, et al. (2000). "Analyses of virus-induced homomeric and heteromeric protein associations between IRF-3 and coactivator CBP/p300". J. Biochem. 128 (2): 301–7. doi:10.1093/oxfordjournals.jbchem.a022753. PMID 10920266.
- Servant MJ, ten Oever B, LePage C, et al. (2001). "Identification of distinct signaling pathways leading to the phosphorylation of interferon regulatory factor 3". J. Biol. Chem. 276 (1): 355–63. doi:10.1074/jbc.M007790200. PMID 11035028.
- Smith EJ, Marié I, Prakash A, et al. (2001). "IRF3 and IRF7 phosphorylation in virus-infected cells does not require double-stranded RNA-dependent protein kinase R or Ikappa B kinase but is blocked by Vaccinia virus E3L protein". J. Biol. Chem. 276 (12): 8951–7. doi:10.1074/jbc.M008717200. PMID 11124948.
- Au WC, Yeow WS, Pitha PM (2001). "Analysis of functional domains of interferon regulatory factor 7 and its association with IRF-3". Virology 280 (2): 273–82. doi:10.1006/viro.2000.0782. PMID 11162841.
- Barnes BJ, Moore PA, Pitha PM (2001). "Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon alpha genes". J. Biol. Chem. 276 (26): 23382–90. doi:10.1074/jbc.M101216200. PMID 11303025.
- Mach CM, Hargrove BW, Kunkel GR (2002). "The Small RNA gene activator protein, SphI postoctamer homology-binding factor/selenocysteine tRNA gene transcription activating factor, stimulates transcription of the human interferon regulatory factor-3 gene". J. Biol. Chem. 277 (7): 4853–8. doi:10.1074/jbc.M108308200. PMID 11724783.
- Morin P, Bragança J, Bandu MT, et al. (2002). "Preferential binding sites for interferon regulatory factors 3 and 7 involved in interferon-A gene transcription". J. Mol. Biol. 316 (5): 1009–22. doi:10.1006/jmbi.2001.5401. PMID 11884139.
- Dang O, Navarro L, Anderson K, David, M (2004). "Cutting edge: anthrax lethal toxin inhibits activation of IFN-regulatory factor 3 by lipopolysaccharide". J. Immunology 172 (2): 747–51. doi:10.4049/jimmunol.172.2.747. PMID 14707042.
PDB gallery
|
|
|
1j2f: X-ray crystal structure of IRF-3 and its functional implications
|
|
1qwt: Auto-inhibitory interferon regulation factor-3 (IRF3) transactivation domain
|
|
1t2k: Structure Of The DNA Binding Domains Of IRF3, ATF-2 and Jun Bound To DNA
|
|
|
|
External links
- Interferon Regulatory Factor-3 at the US National Library of Medicine Medical Subject Headings (MeSH)
- FactorBook IRF3
Cell signaling: carrier proteins: signal transducing adaptor proteins
|
|
JAK-STAT |
- see JAK-STAT signaling pathway
|
|
Growth factor receptor-bound protein |
|
|
Other |
- 14-3-3
- Caveolin
- Cortactin
- Death-inducing signaling complex
- Paxillin
- MYD88
- SMAD
- TRAF
- TRAF1
- TRAF2
- TRAF3
- TRAF4
- TRAF5
- TRAF6)
- BIN1
- SH3BP2
- LDB3
|
|
|
|
|
B trdu: iter (nrpl/grfl/cytl/horl), csrc (lgic, enzr, gprc, igsr, intg, nrpr/grfr/cytr), itra (adap, gbpr, mapk), calc, lipd; path (hedp, wntp, tgfp+mapp, notp, jakp, fsap, hipp, tlrp)
|
|
Transcription factors and intracellular receptors
|
|
(1) Basic domains
|
|
(1.1) Basic leucine zipper (bZIP) |
- Activating transcription factor
- AP-1
- c-Fos
- FOSB
- FOSL1
- FOSL2
- JDP2
- c-Jun
- JUNB
- JunD
- BACH
- BATF
- BLZF1
- C/EBP
- CREB
- CREM
- DBP
- DDIT3
- GABPA
- HLF
- MAF
- NFE
- NFIL3
- NRL
- NRF
- XBP1
|
|
(1.2) Basic helix-loop-helix (bHLH) |
- ATOH1
- AhR
- AHRR
- ARNT
- ASCL1
- BHLH
- ARNTL
- CLOCK
- EPAS1
- FIGLA
- HAND
- HES
- HEY
- HES1
- HIF
- ID
- LYL1
- MESP2
- MXD4
- MYCL1
- MYCN
- Myogenic regulatory factors
- Neurogenins
- NeuroD
- NPAS
- OLIG
- Pho4
- Scleraxis
- SIM
- TAL
- Twist
- USF1
|
|
(1.3) bHLH-ZIP |
- AP-4
- MAX
- MITF
- MNT
- MLX
- MXI1
- Myc
- SREBP
|
|
(1.4) NF-1 |
|
|
(1.5) RF-X |
|
|
(1.6) Basic helix-span-helix (bHSH) |
|
|
|
|
(2) Zinc finger DNA-binding domains
|
|
(2.1) Nuclear receptor (Cys4) |
subfamily 1 |
- Thyroid hormone
- CAR
- FXR
- LXR
- PPAR
- PXR
- RAR
- ROR
- Rev-ErbA
- VDR
|
|
subfamily 2 |
- COUP-TF
- Ear-2
- HNF4
- PNR
- RXR
- Testicular receptor
- TLX
|
|
subfamily 3 |
- Steroid hormone
- Androgen
- Estrogen
- Glucocorticoid
- Mineralocorticoid
- Progesterone
- Estrogen related
|
|
subfamily 4 |
|
|
subfamily 5 |
|
|
subfamily 6 |
|
|
subfamily 0 |
|
|
|
(2.2) Other Cys4 |
|
|
(2.3) Cys2His2 |
|
|
(2.4) Cys6 |
|
|
(2.5) Alternating composition |
- AIRE
- DIDO1
- GRLF1
- ING
- JARID
- JMJD1B
|
|
(2.6) WRKY |
|
|
|
|
(3) Helix-turn-helix domains
|
|
|
|
|
(4) β-Scaffold factors with minor groove contacts
|
|
(4.1) Rel homology region |
- NF-κB
- NFKB1
- NFKB2
- REL
- RELA
- RELB
- NFAT
|
|
(4.2) STAT |
|
|
(4.3) p53 |
- p53
- TBX
- 1
- 2
- 3
- 5
- 19
- 21
- 22
- TBR1
- TBR2
- TFT
- MYRF
- TP63
|
|
(4.4) MADS box |
|
|
(4.6) TATA-binding proteins |
|
|
(4.7) High-mobility group |
- BBX
- HMGB
- HMGN
- HNF
- LEF1
- SOX
- 1
- 2
- 3
- 4
- 5
- 6
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 18
- 21
- SRY
- SSRP1
- TCF
- TOX
|
|
(4.9) Grainyhead |
|
|
(4.10) Cold-shock domain |
|
|
(4.11) Runt |
- CBF
- CBFA2T2
- CBFA2T3
- RUNX1
- RUNX2
- RUNX3
- RUNX1T1
|
|
|
|
(0) Other transcription factors
|
|
(0.2) HMGI(Y) |
|
|
(0.3) Pocket domain |
|
|
(0.5) AP-2/EREBP-related factors |
|
|
(0.6) Miscellaneous |
- ARID
- CAP
- IFI
- MLL
- MNDA
- NFY
- Rho/Sigma
|
|
|
|
see also transcription factor/coregulator deficiencies
B bsyn: dna (repl, cycl, reco, repr) · tscr (fact, tcrg, nucl, rnat, rept, ptts) · tltn (risu, pttl, nexn) · dnab, rnab/runp · stru (domn, 1°, 2°, 3°, 4°)
|
|
Signaling pathway: TLR signaling pathway
|
|
Receptor |
|
|
Other external |
|
|
Internal |
- adaptor: MYD88
- TRIF
- TIRAP
- TRAF6
- TOLLIP
|
|
|
|
|
|
|
|
|
B trdu: iter (nrpl/grfl/cytl/horl), csrc (lgic, enzr, gprc, igsr, intg, nrpr/grfr/cytr), itra (adap, gbpr, mapk), calc, lipd; path (hedp, wntp, tgfp+mapp, notp, jakp, fsap, hipp, tlrp)
|
|
JAK-STAT signaling pathway
|
|
Ligand |
|
|
Cytokine receptor |
- Type I cytokine receptor
- Type II cytokine receptor
|
|
Janus kinase |
|
|
Adaptor proteins |
STAT
|
- STAT1
- STAT2
- STAT3
- STAT4
- STAT5
- STAT6
|
|
PIAS
|
|
|
SOCS
|
|
|
IRF
|
- IRF1
- IRF2
- IRF3
- IRF4
- IRF5
- IRF6
- IRF7
- IRF8
|
|
|
B trdu: iter (nrpl/grfl/cytl/horl), csrc (lgic, enzr, gprc, igsr, intg, nrpr/grfr/cytr), itra (adap, gbpr, mapk), calc, lipd; path (hedp, wntp, tgfp+mapp, notp, jakp, fsap, hipp, tlrp)
|
|
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
English Journal
- Mycoplasma ovipneumoniae induces inflammatory response in sheep airway epithelial cells via a MyD88-dependent TLR signaling pathway.
- Xue D1, Ma Y1, Li M1, Li Y1, Luo H1, Liu X1, Wang Y2.
- Veterinary immunology and immunopathology.Vet Immunol Immunopathol.2015 Jan 15;163(1-2):57-66. doi: 10.1016/j.vetimm.2014.11.008. Epub 2014 Nov 20.
- Mycoplasma ovipneumoniae (M. ovipneumoniae) is a bacterium that specifically infects sheep and goat and causes ovine infectious pleuropneumonia. In an effort to understand the pathogen-host interaction between the M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory re
- PMID 25440083
- Suppressive effects of 1-[4-fluoro-2-(2-nitrovinyl)phenyl]pyrrolidine on the Toll-like receptor signaling pathways.
- Ahn SI1, Lim SJ2, Gu GJ1, Hong CY2, Kim JS1, Jeong HJ3, Koh KO3, Mang JY3, Kim DY3, Youn HS4.
- International immunopharmacology.Int Immunopharmacol.2015 Jan;24(1):36-41. doi: 10.1016/j.intimp.2014.10.033. Epub 2014 Nov 10.
- When various pathogens invade a host, toll-like receptors (TLRs) play a significant role in recognizing the pathogen-associated molecular patterns carried by the pathogens to induce innate immune reaction, followed by acquired immunity reaction. TLRs have two downstream signaling pathways, the myelo
- PMID 25445967
- Molecular mechanism of protopanaxadiol saponin fraction-mediated anti-inflammatory actions.
- Yang Y1, Lee J2, Rhee MH3, Yu T1, Baek KS1, Sung NY1, Kim Y1, Yoon K1, Kim JH1, Kwak YS4, Hong S1, Kim JH5, Cho JY1.
- Journal of ginseng research.J Ginseng Res.2015 Jan;39(1):61-8. doi: 10.1016/j.jgr.2014.06.002. Epub 2014 Jun 19.
- BACKGROUND: Korean Red Ginseng (KRG) is a representative traditional herbal medicine with many different pharmacological properties including anticancer, anti-atherosclerosis, anti-diabetes, and anti-inflammatory activities. Only a few studies have explored the molecular mechanism of KRG-mediated an
- PMID 25535478
Japanese Journal
- Virology : Analysis of a pair of END⁺ and END⁻ viruses derived from the same bovine viral diarrhea virus stock reveals the amino acid determinants in N[pro] responsible for inhibition of type I interferon production
- KOZASA Takashi,ABE Yuri,MITSUHASHI Kazuya [他],TAMURA Tomokazu,AOKI Hiroshi,ISHIMARU Masatoshi,NAKAMURA Shigeyuki,OKAMATSU Masatoshi,KIDA Hiroshi,SAKODA Yoshihiro
- Journal of Veterinary Medical Science 77(5), 511-518, 2015
- … The Exaltation of Newcastle disease virus (END) phenomenon is induced by the inhibition of type I interferon in pestivirus-infected cells in vitro, via proteasomal degradation of cellular interferon regulatory factor (IRF)-3 with the property of the viral autoprotease protein Npro. …
- NAID 130005071888
- Persistent prion infection disturbs the function of Oct-1, resulting in the down-regulation of murine interferon regulatory factor-3
- Homma Takujiro,Ishibashi Daisuke,Nakagaki Takehiro,Fuse Takayuki,Sano Kazunori,Satoh Katsuya,Atarashi Ryuichiro,Nishida Noriyuki
- Scientific Reports 4, 6006, 2014-08-08
- … As a prompt response against invasion of various viruses, interferon regulatory factor-3 (IRF-3) is initially phosphorylated to become activated and upregulates mainly Type I Interferons (IFN-I) in most cell types. … We previously reported that IRF-3-dependent host innate immune responses partially interfere in infection of prions. …
- NAID 120005477044
- A new adjuvant delivery system 'cyclic di-GMP/YSK05 liposome' for cancer immunotherapy
- Miyabe Hiroko,Hyodo Mamoru,Nakamura Takashi,Sato Yusuke,Hayakawa Yoshihiro,Harashima Hideyoshi
- Journal of Controlled Release 184, 20-27, 2014-06-28
- … It is thought that c-di-GMP is recognized by ATP dependent RNA helicase (DDX41) in the cytosol, forms a complex with the Stimulator of interferon genes protein (STING), triggers a signal via the tank binding kinase 1-interferon regulatory factor 3 (TBK1-IRF3) pathway and induces the production of type I interferons. …
- NAID 120005512017
Related Links
- This gene encodes a member of the interferon regulatory transcription factor (IRF) family. The encoded protein is found in an inactive cytoplasmic form that upon serine/threonine phosphorylation forms a complex with CREBBP. This ...
- GoPubMed lists recent and important papers and reviews for interferon regulatory factor 3(Interferon Regulatory Factor-3) ... Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors ...
★リンクテーブル★
[★]
- 関
- interferon regulatory factor-3
[★]
- 英
- interferon regulatory factor-3、IRF-3
[★]
- 関
- actual、actually、in fact、in practice、indeed、practically
[★]
- 関
- element、elementary、factorial、parameter
[★]
- 関
- control、modulatory、regulate、regulation
[★]
- 関
- regulatory factor
[★]
- 関
- controlling factor、regulator