平面偏光
WordNet
- make even or smooth, with or as with a carpenters plane; "plane the top of the door"
- (mathematics) an unbounded two-dimensional shape; "we will refer to the plane of the graph as the X-Y plane"; "any line joining two points on a plane lies wholly on that plane" (同)sheet
- a level of existence or development; "he lived on a worldly plane"
- a carpenters hand tool with an adjustable blade for smoothing or shaping wood; "the cabinetmaker used a plane for the finish work" (同)carpenter''s plane, woodworking plane
- a power tool for smoothing or shaping wood (同)planer, planing machine
- cut or remove with or as if with a plane; "The machine shaved off fine layers from the piece of wood" (同)shave
- travel on the surface of water (同)skim
- make plans for something; "He is planning a trip with his family"
- scale drawing of a structure; "the plans for City Hall were on file" (同)architectural plan
- a series of steps to be carried out or goals to be accomplished; "they drew up a six-step plan"; "they discussed plans for a new bond issue" (同)program, programme
- have the will and intention to carry out some action; "He plans to be in graduate school next year"; "The rebels had planned turmoil and confusion" (同)be after
- make or work out a plan for; devise; "They contrived to murder their boss"; "design a new sales strategy"; "plan an attack" (同)project, contrive, design
- the condition of having or giving polarity (同)polarisation
- the phenomenon in which waves of light or other radiation are restricted in direction of vibration (同)polarisation
PrepTutorEJDIC
- 『平面』,水平面 / 『水準』,程度 / 《話》『飛行機』 / (面が)平らな,平たんな / 平面の,平面図形の;平面上にある / 〈飛行機〉滑走する
- かんな / …‘に'かんなをかける;…‘を'平らにする / かんなをかける
- =plane tree
- 『計画』,『案』,プラン,設計 / 『設計図』,『図面』;(小区域の)地図,市街図 / …‘を'『計画する』,‘の'案を立てる / …の設計図をかく,‘を'設計する / 計画を立てる
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2016/08/29 03:39:31」(JST)
[Wiki en表示]
Diagram of the electric field of a light wave (blue), linear-polarized along a plane (purple line), and consisting of two orthogonal, in-phase components (red and green waves)
In electrodynamics, linear polarization or plane polarization of electromagnetic radiation is a confinement of the electric field vector or magnetic field vector to a given plane along the direction of propagation. See polarization for more information.
The orientation of a linearly polarized electromagnetic wave is defined by the direction of the electric field vector.[1] For example, if the electric field vector is vertical (alternately up and down as the wave travels) the radiation is said to be vertically polarized.
Contents
- 1 Mathematical description of linear polarization
- 2 See also
- 3 References
- 4 External links
Mathematical description of linear polarization
The classical sinusoidal plane wave solution of the electromagnetic wave equation for the electric and magnetic fields is (cgs units)
for the magnetic field, where k is the wavenumber,
is the angular frequency of the wave, and is the speed of light.
Here is the amplitude of the field and
is the Jones vector in the x-y plane.
The wave is linearly polarized when the phase angles are equal,
- .
This represents a wave polarized at an angle with respect to the x axis. In that case, the Jones vector can be written
- .
The state vectors for linear polarization in x or y are special cases of this state vector.
If unit vectors are defined such that
and
then the polarization state can be written in the "x-y basis" as
- .
See also
- Sinusoidal plane-wave solutions of the electromagnetic wave equation
- Polarization
- Circular polarization
- Elliptical polarization
- Photon polarization
References
- Jackson, John D. (1998). Classical Electrodynamics (3rd ed.). Wiley. ISBN 0-471-30932-X.
- ^ Shapira, Joseph; Shmuel Y. Miller (2007). CDMA radio with repeaters. Springer. p. 73. ISBN 0-387-26329-2.
External links
- Animation of Linear Polarization (on YouTube)
- Comparison of Linear Polarization with Circular and Elliptical Polarizations (YouTube Animation)
This article incorporates public domain material from the General Services Administration document "Federal Standard 1037C".
\end{pmatrix}}}</annotation>
</semantics>
</math>
and
- <math xmlns="http://www.w3.org/1998/Math/MathML" >
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>y</mi>
<mo fence="false" stretchy="false">⟩</mo>
<mtext> </mtext>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-REL">
<mover>
<mrow class="MJX-TeXAtom-OP">
<mo>=</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mrow class="MJX-TeXAtom-ORD">
<mi mathvariant="normal">d</mi>
<mi mathvariant="normal">e</mi>
<mi mathvariant="normal">f</mi>
</mrow>
</mrow>
</mover>
</mrow>
</mrow>
<mtext> </mtext>
<mrow class="MJX-TeXAtom-ORD">
<mrow>
<mo>(</mo>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
</mrow>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle |y\rangle \ {\stackrel {\mathrm {def} }{=}}\ {\begin{pmatrix}0\\1\end{pmatrix}}}</annotation>
</semantics>
</math>
then the polarization state can be written in the "x-y basis" as
- <math xmlns="http://www.w3.org/1998/Math/MathML" >
<semantics>
<mrow class="MJX-TeXAtom-ORD">
<mstyle displaystyle="true" scriptlevel="0">
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>ψ</mi>
<mo fence="false" stretchy="false">⟩</mo>
<mo>=</mo>
<mi>cos</mi>
<mo></mo>
<mi>θ</mi>
<mi>exp</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mi>i</mi>
<mi>α</mi>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>x</mi>
<mo fence="false" stretchy="false">⟩</mo>
<mo>+</mo>
<mi>sin</mi>
<mo></mo>
<mi>θ</mi>
<mi>exp</mi>
<mo></mo>
<mrow>
<mo>(</mo>
<mi>i</mi>
<mi>α</mi>
<mo>)</mo>
</mrow>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>y</mi>
<mo fence="false" stretchy="false">⟩</mo>
<mo>=</mo>
<msub>
<mi>ψ</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>x</mi>
</mrow>
</msub>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>x</mi>
<mo fence="false" stretchy="false">⟩</mo>
<mo>+</mo>
<msub>
<mi>ψ</mi>
<mrow class="MJX-TeXAtom-ORD">
<mi>y</mi>
</mrow>
</msub>
<mrow class="MJX-TeXAtom-ORD">
<mo stretchy="false">|</mo>
</mrow>
<mi>y</mi>
<mo fence="false" stretchy="false">⟩</mo>
</mstyle>
</mrow>
<annotation encoding="application/x-tex">{\displaystyle |\psi \rangle =\cos \theta \exp \left(i\alpha \right)|x\rangle +\sin \theta \exp \left(i\alpha \right)|y\rangle =\psi _{x}|x\rangle +\psi _{y}|y\rangle }</annotation>
</semantics>
</math>.
See also
- Sinusoidal plane-wave solutions of the electromagnetic wave equation
- Polarization
- Circular polarization
- Elliptical polarization
- Photon polarization
References
- Jackson, John D. (1998). Classical Electrodynamics (3rd ed.). Wiley. ISBN 0-471-30932-X.
- ^ Shapira, Joseph; Shmuel Y. Miller (2007). CDMA radio with repeaters. Springer. p. 73. ISBN 0-387-26329-2.
External links
- Animation of Linear Polarization (on YouTube)
- Comparison of Linear Polarization with Circular and Elliptical Polarizations (YouTube Animation)
This article incorporates public domain material from the General Services Administration document "Federal Standard 1037C".
</raw>
</toggledisplay>
English Journal
- Crystallite orientation maps in starch granules from polarized Raman spectroscopy (PRS) data.
- Galvis L1, Bertinetto CG2, Putaux JL3, Montesanti N3, Vuorinen T1.
- Carbohydrate polymers.Carbohydr Polym.2016 Dec 10;154:70-6. doi: 10.1016/j.carbpol.2016.08.032. Epub 2016 Aug 10.
- In this work, polarized Raman spectroscopy (PRS) was used to determine orientation maps of crystallites present in Phajus grandifolius starch granules based on the anisotropic response of the glycosidic Raman band at 865cm(-1). The response of this band was preliminarily evaluated using model A-amyl
- PMID 27577898
- Polarization memory effect in the photoluminescence of nc-Si-SiOx light-emitting structures.
- Michailovska K1, Indutnyi I1, Shepeliavyi P1, Sopinskyy M2.
- Nanoscale research letters.Nanoscale Res Lett.2016 Dec;11(1):277. doi: 10.1186/s11671-016-1496-4. Epub 2016 Jun 2.
- The polarization memory (PM) effect in the photoluminescence (PL) of the porous nc-Si-SiOx light-emitting structures, containing nanoparticles of silicon (nc-Si) in the oxide matrix and passivated in a solution of hydrofluoric acid (HF), has been investigated. The studied nc-Si-SiOx structures were
- PMID 27255897
- Magnetic properties of transition metal Mn, Fe and Co dimers on monolayer phosphorene.
- Khan I1, Hong J.
- Nanotechnology.Nanotechnology.2016 Sep 23;27(38):385701. doi: 10.1088/0957-4484/27/38/385701. Epub 2016 Aug 11.
- We studied the geometries, electronic structure and magnetic properties of substitutional doping and adsorption of transition metal (Mn, Fe and Co) dimers on phosphorene monolayer in the framework of the generalized gradient approximation (GGA) and GGA + U. Electronic band structures and magnetic
- PMID 27512907
Japanese Journal
- Effect of Rashba Spin–Orbit Interaction on the Stability of Spin-Vortex-Induced Loop Current in Hole-Doped Cuprate Superconductors: A Scenario for the Appearance of Magnetic Field Enhanced Charge Order and Fermi Surface Reconstruction
- In-plane orientation and composition dependences of crystal structure and electrical properties of {100}-oriented Pb(Zr,Ti)O
Related Links
- Plane polarization definition, polarization of light in which the vibrations are confined to a single plane, that of the wave front. See more. Thesaurus Translate Puzzles & Games Reference Word of the Day Blog Slideshows Apps by ...
- plane polarization n 1. (General Physics) a type of polarization in which the electric vector of waves of light or other electromagnetic radiation is restricted to vibration in a single plane plane′ polariza′tion n. polarization of light in which ...
★リンクテーブル★
[★]
- 英
- plane polarization, plane-polarized light
- 関
- 偏光
[★]
- 関
- design、destine、enterprise、planning、predetermine、program、programme、project、prospective、schedule、schema、scheme
[★]
- 関
- aspect、chamfer、even、face、facet、flat、planar、side、smooth、surface