出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/06/12 07:56:54」(JST)
Glaucoma | |
---|---|
Acute angle closure glaucoma of the right eye. Note the mid-sized pupil, which was nonreactive to light, and injection (nonuniform redness) of the conjunctiva.
|
|
Classification and external resources | |
ICD-10 | H40-H42 |
ICD-9 | 365 |
DiseasesDB | 5226 |
MedlinePlus | 001620 |
eMedicine | oph/578 |
MeSH | D005901 |
Glaucoma is a term describing a group of ocular (eye) disorders that result in optic nerve damage, often associated with increased fluid pressure in the eye (intraocular pressure) (IOP).[1] The disorders can be roughly divided into two main categories, "open-angle" and "closed-angle" (or "angle closure") glaucoma. Open-angle chronic glaucoma is painless, tends to develop slowly over time and often has no symptoms until the disease has progressed significantly. It is treated with either glaucoma medication to lower the pressure, or with various pressure-reducing glaucoma surgeries. Closed-angle glaucoma, however, is characterized by sudden eye pain, redness, nausea and vomiting, and other symptoms resulting from a sudden spike in intraocular pressure, and is treated as a medical emergency.
Glaucoma can permanently damage vision in the affected eye(s), first by decreasing peripheral vision (reducing the visual field), and then potentially leading to blindness if left untreated.[2]
The many different subtypes of glaucoma can all be considered to be a type of optic neuropathy. The nerve damage involves loss of retinal ganglion cells in a characteristic pattern. Raised intraocular pressure (above 21 mmHg or 2.8 kPa) is the most important and only modifiable risk factor for glaucoma. Some may have high eye pressure for years and never develop damage, a condition known as "ocular hypertension". Conversely, the term 'low tension' or 'normal tension' glaucoma is used for those with optic nerve damage and associated visual field loss, but normal or low intraocular pressure.[3]
Glaucoma has been called the "silent thief of sight"[4] because the loss of vision often occurs gradually over a long period of time, and symptoms only occur when the disease is quite advanced. Once lost, vision cannot normally be recovered, so treatment is aimed at preventing further loss. Worldwide, glaucoma is the second-leading cause of blindness after cataracts.[5][6] It is also the leading cause of blindness among African Americans.[7] Glaucoma affects one in 200 people aged 50 and younger, and one in 10 over the age of 80. If the condition is detected early enough, it is possible to arrest the development or slow the progression with medical and surgical means.
The word "glaucoma" comes from the Greek γλαύκωμα, a derivative of γλαυκóς, which commonly described the color of eyes which were not dark (i.e. blue, green, light gray). Eyes described as γλαυκóς due to disease might have had a gray cataract in the Hippocratic era, or, in the early Common Era, the greenish pupillary hue sometimes seen in angle-closure glaucoma.[8] In English, the term "glaucoma" was not commonly used until after 1850, when the development of the ophthalmoscope permitted visualization of the optic nerve damage caused by glaucoma.[9]
Open-angle glaucoma accounts for 90% of glaucoma cases in the United States. It is painless and does not have acute attacks. The only signs are gradually progressive visual field loss, and optic nerve changes (increased cup-to-disc ratio on fundoscopic examination).
Closed-angle glaucoma accounts for less than 10% of glaucoma cases in the United States, but as many as half of glaucoma cases in other nations (particularly Asian countries). About 10% of patients with closed angles present with acute angle closure crises characterized by sudden ocular pain, seeing halos around lights, red eye, very high intraocular pressure (>30 mmHg), nausea and vomiting, suddenly decreased vision, and a fixed, mid-dilated pupil. It is also associated with an oval pupil in some cases. Acute angle closure is an emergency.
Of the several causes for glaucoma, ocular hypertension (increased pressure within the eye) is the most important risk factor in most glaucomas, but in some populations, only 50% of people with primary open-angle glaucoma actually have elevated ocular pressure.[10]
No clear evidence indicates vitamin deficiencies cause glaucoma in humans. It follows, then, that oral vitamin supplementation is not a recommended treatment for glaucoma.[11] Caffeine increases intraocular pressure in those with glaucoma, but does not appear to affect normal individuals.[12]
Many people of East Asian descent are prone to developing angle closure glaucoma due to shallower anterior chamber depths, with the majority of cases of glaucoma in this population consisting of some form of angle closure.[13] Inuit also have a 20- to 40-times higher risk of developing primary angle closure glaucoma.[vague] Women are three times more likely than men to develop acute angle closure glaucoma due to their shallower anterior chambers. People of African descent are three times more likely to develop primary open-angle glaucoma.[vague]
Positive family history is a risk factor for glaucoma. The relative risk of having primary open-angle glaucoma (POAG) is increased about two- to four-fold for individuals who have a sibling with glaucoma.[14] Glaucoma, particularly primary open-angle glaucoma, is associated with mutations in several different genes (including MYOC, ASB10, WDR36, NTF4, and TBK1 genes),[15] although most cases of glaucoma do not involve these genetic mutations. Normal-tension glaucoma, which comprises one-third of POAG, is also associated with genetic mutations (including OPA1 and OPTN genes).[16]
Various rare congenital/genetic eye malformations are associated with glaucoma. Occasionally, failure of the normal third-trimester gestational atrophy of the hyaloid canal and the tunica vasculosa lentis is associated with other anomalies. Angle closure-induced ocular hypertension and glaucomatous optic neuropathy may also occur with these anomalies,[17][18][19] and has been modelled in mice.[20]
Other factors can cause glaucoma, known as "secondary glaucoma", including prolonged use of steroids (steroid-induced glaucoma); conditions that severely restrict blood flow to the eye, such as severe diabetic retinopathy and central retinal vein occlusion (neovascular glaucoma); ocular trauma (angle-recession glaucoma); and uveitis (uveitic glaucoma).
This section includes a list of references, but its sources remain unclear because it has insufficient inline citations. Please help to improve this article by introducing more precise citations. (June 2012) |
The underlying cause of open-angle glaucoma remains unclear. Several theories exist on its exact etiology. However, the major risk factor for most glaucomas, and the focus of treatment, is increased intraocular pressure, i.e. ocular hypertension. Intraocular pressure is a function of production of liquid aqueous humor by the ciliary processes of the eye, and its drainage through the trabecular meshwork. Aqueous humor flows from the ciliary processes into the posterior chamber, bounded posteriorly by the lens and the zonules of Zinn, and anteriorly by the iris. It then flows through the pupil of the iris into the anterior chamber, bounded posteriorly by the iris and anteriorly by the cornea. From here, the trabecular meshwork drains aqueous humor via Schlemm's canal into scleral plexuses and general blood circulation.[21]
In open/wide-angle glaucoma, flow is reduced through the trabecular meshwork, due to the degeneration and obstruction of the trabecular meshwork, whose original function is to absorb the aqueous humor. Loss of aqueous humor absorption leads to increased resistance and thus a chronic, painless buildup of pressure in the eye.[22] In close/narrow-angle, the iridocorneal angle is completely closed because of forward displacement of the final roll and root of the iris against the cornea, resulting in the inability of the aqueous fluid to flow from the posterior to the anterior chamber and then out of the trabecular network. This accumulation of aqueous humor causes an acute increase of pressure and pain.
The inconsistent relationship of glaucomatous optic neuropathy with ocular hypertension has provoked hypotheses and studies on anatomic structure, eye development, nerve compression trauma, optic nerve blood flow, excitatory neurotransmitter, trophic factor, retinal ganglion cell/axon degeneration, glial support cell, immune system, aging mechanisms of neuron loss, and severing of the nerve fibers at the scleral edge.[23][24][25][26][27][28][29][30][31][32][33][34]
Screening for glaucoma is usually performed as part of a standard eye examination performed by optometrists and ophthalmologists. Testing for glaucoma should include measurements of the intraocular pressure via tonometry,[35] anterior chamber angle examination or gonioscopy, and examination of the optic nerve to look for any visible damage to it, or change in the cup-to-disc ratio and also rim appearance and vascular change. A formal visual field test should be performed. The retinal nerve fiber layer can be assessed with imaging techniques such as optical coherence tomography, scanning laser polarimetry, and/or scanning laser ophthalmoscopy.[36][37]
Owing to the sensitivity of all methods of tonometry to corneal thickness, methods such as Goldmann tonometry should be augmented with pachymetry to measure central corneal thickness (CCT). A thicker-than-average cornea can result in a pressure reading higher than the 'true' pressure, whereas a thinner-than-average cornea can produce a pressure reading lower than the 'true' pressure.
Because pressure measurement error can be caused by more than just CCT (i.e., corneal hydration, elastic properties, etc.), it is impossible to 'adjust' pressure measurements based only on CCT measurements. The frequency doubling illusion can also be used to detect glaucoma with the use of a frequency doubling technology perimeter.[38]
Examination for glaucoma also could be assessed with more attention given to sex, race, history of drug use, refraction, inheritance and family history.[36]
What Test Examines | How Examination is Accomplished | |
---|---|---|
Tonometry | Inner eye pressure | The eye is numbed via eye drops. The examiner then uses a tonometer to measure the inner pressure of the eye through pressure applied by a puff of warm air or a tiny tool. |
Ophthalmoscopy (dilated eye exam) | Shape and color of the optic nerve | The pupil is dilated via the application of eye drops. Using a small magnification device with a light on the end, the examiner can examine the magnified optic nerve. |
Perimetry (visual field test) | Complete field of vision | The patient looks straight ahead and is asked to indicate when light passes the patient's peripheral field of vision. This allows the examiner to map the patient’s field of vision. |
Gonioscopy | Angle in the eye where the iris meets the cornea | Eye drops are used to numb the eye. A hand-held contact lens with a mirror is placed gently on the eye to allow the examiner to see the angle between the cornea and the iris. |
Pachymetry | Thickness of the cornea | The examiner places a pachymeter gently on the front of the eye to measure its thickness. |
Nerve fiber analysis | Thickness of the nerve fiber layer | Using one of several techniques, the nerve fibers are examined. |
Glaucoma has been classified into specific types:[42]
Primary glaucoma
Variants of primary glaucoma
Primary angle closure glaucoma is caused by contact between the iris and trabecular meshwork, which in turn obstructs outflow of the aqueous humor from the eye. This contact between iris and trabecular meshwork (TM) may gradually damage the function of the meshwork until it fails to keep pace with aqueous production, and the pressure rises. In over half of all cases, prolonged contact between iris and TM causes the formation of synechiae (effectively "scars").
These cause permanent obstruction of aqueous outflow. In some cases, pressure may rapidly build up in the eye, causing pain and redness (symptomatic, or so called "acute" angle closure). In this situation, the vision may become blurred, and halos may be seen around bright lights. Accompanying symptoms may include headache and vomiting.
Diagnosis is made from physical signs and symptoms: pupils mid-dilated and unresponsive to light, cornea edematous (cloudy), reduced vision, redness, and pain. However, the majority of cases are asymptomatic. Prior to very severe loss of vision, these cases can only be identified by examination, generally by an eye care professional.
Once any symptoms have been controlled, the first line (and often definitive) treatment is laser iridotomy. This may be performed using either Nd:YAG or argon lasers, or in some cases by conventional incisional surgery. The goal of treatment is to reverse, and prevent, contact between iris and trabecular meshwork. In early to moderately advanced cases, iridotomy is successful in opening the angle in around 75% of cases. In the other 25%, laser iridoplasty, medication (pilocarpine) or incisional surgery may be required.
Primary open-angle glaucoma is when optic nerve damage results in a progressive loss of the visual field.[44] This is associated with increased pressure in the eye. Not all people with primary open-angle glaucoma have eye pressure that is elevated beyond normal, but decreasing the eye pressure further has been shown to stop progression even in these cases.
The increased pressure is caused by trabecular blockage. Because the microscopic passageways are blocked, the pressure builds up in the eye and causes imperceptible very gradual vision loss. Peripheral vision is affected first, but eventually the entire vision will be lost if not treated.
Diagnosis is made by looking for cupping of the optic nerve. Prostaglandin agonists work by opening uveoscleral passageways. Beta blockers, such as timolol, work by decreasing aqueous formation. Carbonic anhydrase inhibitors decrease bicarbonate formation from ciliary processes in the eye, thus decreasing formation of Aqueous humor. Parasympathetic analogs are drugs that work on the trabecular outflow by opening up the passageway and constricting the pupil. Alpha 2 agonists (brimonidine, apraclonidine) both decrease fluid production (via. inhibition of AC) and increase drainage.
Developmental glaucoma
Secondary glaucoma
Neovascular glaucoma, an uncommon type of glaucoma, is difficult or nearly impossible to treat, and is often caused by proliferative diabetic retinopathy (PDR) or central retinal vein occlusion (CRVO). It may also be triggered by other conditions that result in ischemia of the retina or ciliary body. Individuals with poor blood flow to the eye are highly at risk for this condition.
Neovascular glaucoma results when new, abnormal vessels begin developing in the angle of the eye that begin blocking the drainage. Patients with such condition begin to rapidly lose their eyesight. Sometimes, the disease appears very rapidly, especially after cataract surgery procedures. A new treatment for this disease, as first reported by Kahook and colleagues, involves use of a novel group of medications known as anti-VEGF agents. These injectable medications can lead to a dramatic decrease in new vessel formation and, if injected early enough in the disease process, may lead to normalization of intraocular pressure.
Toxic glaucoma is open angle glaucoma with an unexplained significant rise of intraocular pressure following unknown pathogenesis. Intraocular pressure can sometimes reach 80 mmHg (11 kPa). It characteristically manifests as ciliary body inflammation and massive trabecular oedema that sometimes extends to Schlemm's canal. This condition is differentiated from malignant glaucoma by the presence of a deep and clear anterior chamber and a lack of aqueous misdirection. Also, the corneal appearance is not as hazy. A reduction in visual acuity can occur followed neuroretinal breakdown.
Associated factors include inflammation, drugs, trauma and intraocular surgery, including cataract surgery and vitrectomy procedures. Gede Pardianto (2005) reported on four patients who had toxic glaucoma. One of them underwent phaecoemulsification with small particle nucleus drops. Some cases can be resolved with some medication, vitrectomy procedures or trabeculectomy. Valving procedures can give some relief, but further research is required.[45]
Absolute glaucoma is the end stage of all types of glaucoma. The eye has no vision, absence of pupillary light reflex and pupillary response, and has a stony appearance. Severe pain is present in the eye. The treatment of absolute glaucoma is a destructive procedure like cyclocryoapplication, cyclophotocoagulation, or injection of 99% alcohol.
The United States Preventive Services Task Force as of 2013 states there is insufficient evidence to recommend for or against screening for glaucoma.[46] Therefore, there is no national screening program in the US; however, there is a glaucoma screening program in the UK. Those at risk are advised to have a dilated eye examination at least once a year.[47]
The modern goals of glaucoma management are to avoid glaucomatous damage and nerve damage, and preserve visual field and total quality of life for patients, with minimal side effects.[48][49] This requires appropriate diagnostic techniques and follow-up examinations, and judicious selection of treatments for the individual patient. Although intraocular pressure is only one of the major risk factors for glaucoma, lowering it via various pharmaceuticals and/or surgical techniques is currently the mainstay of glaucoma treatment.
Vascular flow and neurodegenerative theories of glaucomatous optic neuropathy have prompted studies on various neuroprotective therapeutic strategies, including nutritional compounds, some of which may be regarded by clinicians as safe for use now, while others are on trial.
Because of the important role of the visual system in balance and maintaining posture in human beings, glaucoma patients should consider themselves at greater risk of falls, and would be advised to take the necessary precautions to help prevent any accidents. In addition, since the peripheral visual system has such a high contribution to this intrinsic balancing mechanism, the severity of glaucoma and degree of visual field obstruction should also be considered.[50] Because of the relationship of glaucoma with age, other associated factors affecting balance (i.e. impaired proprioception) may also be present, further increasing the risk of falls.
Intraocular pressure can be lowered with medication, usually eye drops. Several different classes of medications are used to treat glaucoma, with several different medications in each class.
Each of these medicines may have local and systemic side effects. Adherence to medication protocol can be confusing and expensive; if side effects occur, the patient must be willing either to tolerate them, or to communicate with the treating physician to improve the drug regimen. Initially, glaucoma drops may reasonably be started in either one or in both eyes.[51]
Poor compliance with medications and follow-up visits is a major reason for vision loss in glaucoma patients. A 2003 study of patients in an HMO found half failed to fill their prescriptions the first time, and one-fourth failed to refill their prescriptions a second time.[52] Patient education and communication must be ongoing to sustain successful treatment plans for this lifelong disease with no early symptoms.
The possible neuroprotective effects of various topical and systemic medications are also being investigated.[11][53][54][55]
Both laser and conventional surgeries are performed to treat glaucoma. Surgery is the primary therapy for those with congenital glaucoma.[56] Generally, these operations are a temporary solution, as there is not yet a cure for glaucoma.
Canaloplasty is a nonpenetrating procedure using microcatheter technology. To perform a canaloplasty, an incision is made into the eye to gain access to the Schlemm's canal in a similar fashion to a viscocanalostomy. A microcatheter will circumnavigate the canal around the iris, enlarging the main drainage channel and its smaller collector channels through the injection of a sterile, gel-like material called viscoelastic. The catheter is then removed and a suture is placed within the canal and tightened.
By opening the canal, the pressure inside the eye may be relieved, although the reason is unclear, since the canal (of Schlemm) does not have any significant fluid resistance in glaucoma or healthy eyes. Long-term results are not available.[57][58]
Argon laser trabeculoplasty (ALT) may be used to treat open-angle glaucoma. It is a temporary solution, not a cure. A 50-μm argon laser spot is aimed at the trabecular meshwork to stimulate opening of the mesh to allow more outflow of aqueous fluid. Usually, half of the angle is treated at a time. Traditional laser trabeculoplasty uses a thermal argon laser in an argon laser trabeculoplasty procedure.
A newer type of laser trabeculoplasty uses a "cold" (nonthermal) laser to stimulate drainage in the trabecular meshwork. This newer procedure, selective laser trabeculoplasty (SLT), uses a 532-nm, frequency-doubled, Q-switched Nd:YAG laser, which selectively targets melanin pigment in the trabecular meshwork cells. Studies show SLT is as effective as ALT at lowering eye pressure. In addition, SLT may be repeated three to four times, whereas ALT can usually be repeated only once.
Nd:YAG laser peripheral iridotomy (LPI) may be used in patients susceptible to or affected by angle closure glaucoma or pigment dispersion syndrome. During laser iridotomy, laser energy is used to make a small, full-thickness opening in the iris to equalize the pressure between the front and back of the iris, thus correcting any abnormal bulging of the iris. In people with narrow angles, this can uncover the trabecular meshwork. In some cases of intermittent or short-term angle closure, this may lower the eye pressure. Laser iridotomy reduces the risk of developing an attack of acute angle closure. In most cases, it also reduces the risk of developing chronic angle closure or of adhesions of the iris to the trabecular meshwork.
Diode laser cycloablation lowers IOP by reducing aqueous secretion by destroying secretory ciliary epithelium.[36]
The most common conventional surgery performed for glaucoma is the trabeculectomy. Here, a partial thickness flap is made in the scleral wall of the eye, and a window opening is made under the flap to remove a portion of the trabecular meshwork. The scleral flap is then sutured loosely back in place to allow fluid to flow out of the eye through this opening, resulting in lowered intraocular pressure and the formation of a bleb or fluid bubble on the surface of the eye. Scarring can occur around or over the flap opening, causing it to become less effective or lose effectiveness altogether. Traditionally, chemotherapeutic adjuvants, such as mitomycin C (MMC, 0.5–0.2 mg/ml) or 5-fluorouracil (5-FU, 50 mg/ml), are applied with soaked sponges on the wound bed to prevent filtering blebs from scarring by inhibiting fibroblast proliferation. Contemporary alternatives include the sole or combinative implementation of nonchemotherapeutic adjuvants, such as collagen matrix implant[59][60][61][62] or other biodegradable spacers, to prevent super scarring by randomization and modulation of fibroblast proliferation in addition to the mechanical prevention of wound contraction and adhesion.
Professor Anthony Molteno developed the first glaucoma drainage implant, in Cape Town in 1966.[63] Since then, several different types of implants have followed on from the original, the Baerveldt tube shunt, or the valved implants, such as the Ahmed glaucoma valve implant or the ExPress Mini Shunt and the later generation pressure ridge Molteno implants. These are indicated for glaucoma patients not responding to maximal medical therapy, with previous failed guarded filtering surgery (trabeculectomy). The flow tube is inserted into the anterior chamber of the eye, and the plate is implanted underneath the conjunctiva to allow flow of aqueous fluid out of the eye into a chamber called a bleb.
The ongoing scarring over the conjunctival dissipation segment of the shunt may become too thick for the aqueous humor to filter through. This may require preventive measures using antifibrotic medications, such as 5-fluorouracil or mitomycin-C (during the procedure), or other nonantifibrotic medication methods, such as collagen matrix implant,[65][66] or biodegradable spacer, or later on create a necessity for revision surgery with the sole or combinative use of donor patch grafts or collagen matrix implant.[67][68] And for glaucomatous painful blind eye and some cases of glaucoma, cyclocryotherapy for ciliary body ablation could be considered to be performed.[69]
TR BioSurgical has commercialized a new implant specifically for veterinary medicine, called TR-ClarifEYE. The implant consists of a new biomaterial, the STAR BioMaterial, which consists of silicone with a very precise homogenous pore size, a property which reduces fibrosis and improves tissue integration. The implant contains no valves and is placed completely within the eye without sutures. To date, it has demonstrated long-term success (longer than a year) in a pilot study in medically refractory dogs with advanced glaucoma.[70]
The most common surgical approach currently used for the treatment of glaucoma is trabeculectomy, in which the sclera is punctured to alleviate intraocular pressure.
Nonpenetrating deep sclerectomy (NPDS) surgery is a similar, but modified, procedure, in which instead of puncturing the scleral bed and trabecular meshwork under a scleral flap, a second deep scleral flap is created, excised, with further procedures of deroofing the Schlemm's canal, upon which, percolation of liquid from the inner eye is achieved and thus alleviating intraocular pressure, without penetrating the eye. NPDS is demonstrated to cause significantly fewer side effects than trabeculectomy.[citation needed] However, NPDS is performed manually and requires higher level of skills that may be assisted with instruments.[citation needed] In order to prevent wound adhesion after deep scleral excision and to maintain good filtering results, NPDS as with other non-penetrating procedures is sometimes performed with a variety of biocompatible spacer or devices, such as the Aquaflow collagen wick,[71] ologen Collagen Matrix,[72][73][74] or Xenoplast glaucoma implant.[75]
Laser-assisted NPDS is performed with the use of a CO2 laser system. The laser-based system is self-terminating once the required scleral thickness and adequate drainage of the intraocular fluid have been achieved. This self-regulation effect is achieved as the CO2 laser essentially stops ablating as soon as it comes in contact with the intraocular percolated liquid, which occurs as soon as the laser reaches the optimal residual intact layer thickness.
In open-angle glaucoma, the typical progression from normal vision to complete blindness takes about 25 years to 70 years without treatment, depending on the method of estimation used.[76] The intraocular pressure can also have an effect, with higher pressures reducing the time until blindness.[77]
As of 2010, there were 44.7 million people in the world with open angle glaucoma.[79] The same year, there were 2.8 million people in the United States with open angle glaucoma.[79] By 2020, the prevalence is projected to increase to 58.6 million worldwide and 3.4 million the United States.[79]
Internationally, glaucoma is the second-leading cause of blindness, after cataracts. Glaucoma is also the leading cause of blindness in African Americans, who have higher rates of primary open angle glaucoma.[80] Bilateral vision loss can negatively affect mobility and interfere with driving.[81]
A meta-analysis published in 2009 found that patients with primary open angle glaucoma do not have increased mortality rates, or increased risk of cardiovascular death.[82]
A 2013 Cochrane Systematic Review compared the effect of brimonidine and timolol in slowing the progression of open angle glaucoma in adult participants.[83] The results showed that participants assigned to brimonidine showed less visual field progression that those assigned to timolol, though the results were not significant, given the heavy loss-to-followup and limited evidence.[83] The mean intraocular pressure for both groups were similar. Participants in the brimonidine group had a higher occurrence of side effects caused by medication than participants in the timolol group.[83]
Natural compounds[clarification needed] of research interest in glaucoma prevention or treatment include: fish oil and omega-3 fatty acids, alpha lipoic acid,[84] bilberries, vitamin E, cannabinoids, carnitine, coenzyme Q10, curcurmin, Salvia miltiorrhiza, dark chocolate, erythropoietin, folic acid, Ginkgo biloba, ginseng, L-glutathione, grape seed extract, green tea, magnesium, melatonin, methylcobalamin, N-acetyl-L cysteine, pycnogenols, resveratrol, quercetin and salt. However, most of these compounds have not demonstrated effectiveness in clinical trials.[53][54][55] Magnesium, ginkgo, salt and fludrocortisone, are already used by some physicians. (Note: fludrocortisone is not a natural compound, but a steroid.)
Studies in the 1970s reported that the use of cannabis may lower intraocular pressure.[85][86][87] In an effort to determine whether marijuana, or drugs derived from it, might be effective as a glaucoma treatment, the US National Eye Institute supported research studies from 1978 to 1984. These studies demonstrated some derivatives of marijuana lowered intraocular pressure when administered orally, intravenously, or by smoking, but not when topically applied to the eye.
In 2003, the American Academy of Ophthalmology released a position statement stating that cannabis was not more effective than prescription medications. Furthermore, no scientific evidence has been found that demonstrates increased benefits and/or diminished risks of cannabis use to treat glaucoma compared with the wide variety of pharmaceutical agents now available.[87][88]
In 2012 the American Glaucoma Society published a position paper discrediting the use of cannabis as a legitimate treatment for elevated intraocular pressure, for reasons including short duration of action and side effects that limit many activities of daily living.[89]
Peripherally selective 5-HT2A agonists, such as the indazole derivative AL-34662, are currently under development and show significant promise in the treatment of glaucoma.[90][91]
The survey team of Dr. Yoshiki Sasai,[92] working at the RIKEN of Center for Developmental Biology (CDB) in Japan, succeeded in making a retina cell in three dimensions from embryonic stem cells, as was reported in Nature (7 April 2011).[93] It was the first such success in the world, and Dr. Sasai said the goal for putting it to practical use in the retinas of human for clinical applications was within two years.
|
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
国試過去問 | 「105F015」 |
リンク元 | 「緑内障」「黒内障」「急性原発閉塞隅角緑内障」「glaucomatous」 |
拡張検索 | 「narrow-angle glaucoma」 |
B
※国試ナビ4※ [105F014]←[国試_105]→[105F016]
催眠鎮静剤、抗不安剤 アモバン(ゾピクロン) エバミール、ロラメット(ロルメタゼパム) エリスパン(フルジアゼパム) エリミン(ニメタゼパム) コレミナール(フルタゾラム) コンスタン、ソラナックス(アルプラゾラム) セニラン(ブロマゼパム) セパゾン(クロキサゾラム) セルシン、ホリゾン(ジアゼパム) セレナール(オキサゾラム) ソメリン(ハロキサゾラム) ダイアップ(ジアゼパム) ダルメート、ベノジール(フルラゼパム) ドラール(クアゼパム) バランス、コントール(クロルジアゼポキシド) ハルシオン(トリアゾラム) ベンザリン、ネルボン(ニトラゼパム) マイスリー(ゾルピデム) メイラックス(ロフラゼプ酸エチル) メレックス(メキサゾラム) メンドン(クロラゼプ酸) リスミー(リルマザホン) ルネスタ(エスゾピクロン) レキソタン(ブロマゼパム) レスタス(フルトプラゼパム) レスミット(メダゼパム) レンドルミン(ブロチゾラム) ロヒプノール、サイレース(フルニトラゼパム) ワイパックス(ロラゼパム) 臭化カリウム(臭化カリウム) 臭化ナトリウム(臭化ナトリウム)
抗てんかん剤
マイスタン(クロバザム) リボトリール、ランドセン(クロナゼパム)
抗パーキンソン剤
アーテン(トリヘキシフェニジル(錠)) アキネトン、タスモリン(ビペリデン) コリンホール(メチキセン) ドパゾール(レボドパ) ドプス(ドロキシドパ) トリモール(ピロヘプチン) ネオドパストン、メネシット(レボドパ,カルビドパ) パーキン(ヒベンズ酸プロフェナミン) パーキン(プロフェナミン) ペントナ(マザチコール) マドパー、イーシー・ドパール、ネオドパゾール(レボドパ,ベンセラジド)
神経系用剤(含む別用途)
アナフラニール(クロミプラミン) アモキサン(アモキサピン) アンプリット(ロフェプラミン) サインバルタ(デュロキセチン) ストラテラ(アトモキセチン) スルモンチール(トリミプラミン) デパス(エチゾラム) トフラニール(イミプラミン) トリプタノール(アミトリプチリン) ノリトレン(ノルトリプチリン) プロチアデン(ドスレピン) ベタナミン(ペモリン) リーゼ(クロチアゼパム) リタリン、コンサータ(メチルフェニデート) ルジオミール(マプロチリン)
総合感冒剤
LL(複合感冒薬) PL(複合感冒薬) ピーエイ(複合感冒薬) ペレックス(複合感冒薬) 小児用ペレックス(複合感冒薬(小児用)) 幼児用PL(複合感冒薬)
他の中枢神経系用薬
サノレックス(マジンドール)
骨格筋弛緩剤
ロキシーン(プリジノール)
自律神経剤
エスペラン(オキサピウム) チアトン(チキジウム) トランコロン(メペンゾラート) トランコロンP(メペンゾラート,フェノバルビタール) プロ・バンサイン(プロパンテリン)
鎮けい剤
コリオパン(ブトロピウム) セスデン(チメピジウム) ダイピン(N-メチルスコポラミン) ダクチル(ピペリドレート) ファイナリン(メチルベナクチジウム) ブスコパン(ブチルスコポラミン) ロートエキス(ロートエキス)
眼科用剤
アトロピン点眼液、リュウアト眼軟膏(アトロピン) ウブレチド(ジスチグミン) エピスタ(エピネフリン) サイプレジン(シクロペントラート) ネオシネジン(フェニレフリン) ピバレフリン(ジピベフリン) ミドリンM(トロピカミド) ミドリンP(トロピカミド,フェニレフリン) 眼科用プリビナ(ナファゾリン) 臭化水素酸ホマトロピン(ホマトロピン)
耳鼻科用剤
ナーベル(テトラヒドロゾリン) ナシビン(オキシメタゾリン)
鎮暈剤
トラベルミン(ジフェンヒドラミン,ジプロフィリン)
不整脈用剤
シベノール(シベンゾリン) ピメノール(ピルメノール) リスモダン、ノルペース(ジソピラミド) リスモダンR、ノルペースCR(ジソピラミド)
利尿剤
ダイアモックス(アセタゾラミド)
血管拡張剤
アイトロール(一硝酸イソソルビド) ニトロール(硝酸イソソルビド) ニトロール(硝酸イソソルビド) ニトロール、フランドル(硝酸イソソルビド(持効)) ニトログリセリン錠(ニトログリセリン(舌下)) ニトロペン(ニトログリセリン(舌下)) フランドル、ニトロール(硝酸イソソルビド(外)) ミリステープ、ニトロダーム、ミオコールスプレー(ニトログリセリン(外用)) ミリステープ、ニトロダーム、ミオコールスプレー(ニトログリセリン(外用))
他の循環器官用薬
リズミック(アメジニウム)
鎮咳剤
アストーマ(アストーマ(製)) アストフィリン(アストフィリン(製)) カフコデ(カフコデ(製)) トクレス(ペントキシベリン) フスコデ(フスコデ(製))
気管支拡張剤・他
アトロベント(イプラトロピウム) スピリーバ(チオトロピウム) テルシガン(オキシトロピウム) フルブロン(フルトロピウム)
消化性潰瘍用剤
コランチル(コランチル(製)) ノバフイリンG(ノバフイリンG(製)) メサフィリン(メサフィリン(散)(製)) 複合エピサネートG(エピサネート(製))
健胃消化剤
MP散(複合健胃散) ベルサン(複合健胃散)
他の消化器官用薬
イリコロンM錠(イリコロンM(製))
副腎ホルモン
セレスタミン(セレスタミン(製)) ボスミン(アドレナリン)
他の泌尿生殖器官、肛門用薬
ウリトス、ステーブラ(イミダフェナシン) デトルシトール(トルテロジン) バップフォー(プロピベリン) ベシケア(ソリフェナシン) ポラキス(オキシブチニン)
抗ヒスタミン剤
アリメジン(アリメマジン) ゼスラン、ニポラジン(メキタジン) タベジール、テルギン(クレマスチン) ピレチア、ヒベルナ(プロメタジン) ベネン(トリプロリジン) ペリアクチン(シプロヘプタジン) ホモクロミン(ホモクロルシクリジン) ポララミン(d-クロルフェニラミン) レスタミン(ジフェンヒドラミン)
.