Tumor necrosis factor (ligand) superfamily, member 10 |
PDB rendering based on 1d0g. |
Available structures |
PDB |
Ortholog search: PDBe, RCSB |
List of PDB id codes |
1D0G, 1D2Q, 1D4V, 1DG6, 1DU3
|
|
|
Identifiers |
Symbols |
TNFSF10 ; APO2L; Apo-2L; CD253; TL2; TRAIL |
External IDs |
OMIM: 603598 MGI: 107414 HomoloGene: 2824 ChEMBL: 5813 GeneCards: TNFSF10 Gene |
Gene ontology |
Molecular function |
• receptor binding
• cytokine activity
• tumor necrosis factor receptor binding
• protein binding
• metal ion binding
|
Cellular component |
• extracellular region
• extracellular space
• integral component of plasma membrane
• extracellular vesicular exosome
|
Biological process |
• apoptotic process
• activation of cysteine-type endopeptidase activity involved in apoptotic process
• immune response
• signal transduction
• cell-cell signaling
• male gonad development
• response to insulin
• positive regulation of apoptotic process
• positive regulation of I-kappaB kinase/NF-kappaB signaling
• positive regulation of cysteine-type endopeptidase activity involved in apoptotic process
• positive regulation of release of cytochrome c from mitochondria
• apoptotic signaling pathway
• positive regulation of extrinsic apoptotic signaling pathway
• regulation of extrinsic apoptotic signaling pathway in absence of ligand
|
Sources: Amigo / QuickGO |
|
RNA expression pattern |
|
|
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
|
Entrez |
8743 |
22035 |
|
Ensembl |
ENSG00000121858 |
ENSMUSG00000039304 |
|
UniProt |
P50591 |
P50592 |
|
RefSeq (mRNA) |
NM_001190942 |
NM_009425 |
|
RefSeq (protein) |
NP_001177871 |
NP_033451 |
|
Location (UCSC) |
Chr 3:
172.22 – 172.24 Mb |
Chr 3:
27.32 – 27.34 Mb |
|
PubMed search |
[1] |
[2] |
|
|
In the field of cell biology, TNF-related apoptosis-inducing ligand (TRAIL), is a protein functioning as a ligand that induces the process of cell death called apoptosis.[1][2]
TRAIL is a cytokine that is produced and secreted by most normal tissue cells. It causes apoptosis primarily in tumor cells,[3] by binding to certain death receptors. It has been used as a target of several anti-cancer therapeutics since the mid-1990s. These however have not shown significant survival benefit.[4]
TRAIL has also been designated CD253 (cluster of differentiation 253) and TNFSF10 (tumor necrosis factor (ligand) superfamily, member 10).[3]
Contents
- 1 Gene
- 2 Structure
- 3 Function
- 4 Interactions
- 5 See also
- 6 References
- 7 Further reading
- 8 External links
Gene
In humans, the gene that encodes TRAIL is located at chromosome 3q26, which is not close to other TNF family members. The genomic structure of the TRAIL gene spans approximately 20 kb and is composed of five exonic segments 222, 138, 42, 106, and 1245 nucleotides and four introns of approximately 8.2, 3.2, 2.3 and 2.3 kb. The TRAIL gene lacks TATA and CAAT boxes and the promotor region contains putative response elements for GATA, AP-1, C/EBP, SP-1, OCT-1, AP3, PEA3, CF-1, and ISRE.
Structure
TRAIL shows homology to other members of the tumor necrosis factor superfamily. It is composed of 281 amino acids and has characteristics of a type II transmembrane protein (i.e. no leader sequence and an internal transmembrane domain). The N-terminal cytoplasmic domain is not conserved across family members, however, the C-terminal extracellular domain is conserved and can be proteolytically cleaved from the cell surface. TRAIL forms a homotrimer that binds three receptor molecules.
Function
TRAIL binds to the death receptors DR4 (TRAIL-RI) and DR5 (TRAIL-RII). The process of apoptosis is caspase-8-dependent. Caspase-8 activates downstream effector caspases including procaspase-3, -6, and -7, leading to activation of specific kinases.[5] TRAIL also binds the receptors DcR1 and DcR2, which do not contain a cytoplasmic domain (DcR1) or contain a truncated death domain (DcR2). DcR1 functions as a TRAIL-neutralizing decoy-receptor. The cytoplasmic domain of DcR2 is functional and activates NFkappaB. In cells expressing DcR2, TRAIL binding therefore activates NFkappaB, leading to transcription of genes known to antagonize the death signaling pathway and/or to promote inflammation.
Interactions
TRAIL has been shown to interact with TNFRSF10B.[6][7][8]
See also
References
- ^ Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA (December 1995). "Identification and characterization of a new member of the TNF family that induces apoptosis". Immunity 3 (6): 673–82. doi:10.1016/1074-7613(95)90057-8. PMID 8777713.
- ^ Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A (May 1996). "Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family". J. Biol. Chem. 271 (22): 12687–90. doi:10.1074/jbc.271.22.12687. PMID 8663110.
- ^ a b "TNFSF10". NCBI Gene.
- ^ Cormier Z (February 2013). "Small-molecule drug drives cancer cells to suicide". Nature 494. doi:10.1038/nature.2013.12385.
- ^ Song JJ, Lee YJ (May 2008). "Differential cleavage of Mst1 by caspase-7/-3 is responsible for TRAIL-induced activation of the MAPK superfamily". Cell. Signal. 20 (5): 892–906. doi:10.1016/j.cellsig.2008.01.001. PMC 2483832. PMID 18276109.
- ^ Kaptein A, Jansen M, Dilaver G, Kitson J, Dash L, Wang E, Owen MJ, Bodmer JL, Tschopp J, Farrow SN (November 2000). "Studies on the interaction between TWEAK and the death receptor WSL-1/TRAMP (DR3)". FEBS Lett. 485 (2-3): 135–41. doi:10.1016/S0014-5793(00)02219-5. PMID 11094155.
- ^ Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, Timour MS, Gerhart MJ, Schooley KA, Smith CA, Goodwin RG, Rauch CT (September 1997). "TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL". EMBO J. 16 (17): 5386–97. doi:10.1093/emboj/16.17.5386. PMC 1170170. PMID 9311998.
- ^ Hymowitz SG, Christinger HW, Fuh G, Ultsch M, O'Connell M, Kelley RF, Ashkenazi A, de Vos AM (October 1999). "Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5". Mol. Cell 4 (4): 563–71. doi:10.1016/S1097-2765(00)80207-5. PMID 10549288.
Further reading
- Wiley S, Schooley K, Smolak P, Din W, Huang C, Nicholl J, Sutherland G, Smith T, Rauch C, Smith C (1995). "Identification and characterization of a new member of the TNF family that induces apoptosis". Immunity 3 (6): 673–82. doi:10.1016/1074-7613(95)90057-8. PMID 8777713.
- Almasan A, Ashkenazi A (2004). "Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy". Cytokine Growth Factor Rev. 14 (3–4): 337–48. doi:10.1016/S1359-6101(03)00029-7. PMID 12787570.
- Cha SS, Song YL, Oh BH (2004). "Specificity of molecular recognition learned from the crystal structures of TRAIL and the TRAIL:sDR5 complex". Vitam. Horm. Vitamins & Hormones 67: 1–17. doi:10.1016/S0083-6729(04)67001-4. ISBN 978-0-12-709867-8. PMID 15110168.
- Song C, Jin B (2005). "TRAIL (CD253), a new member of the TNF superfamily". J. Biol. Regul. Homeost. Agents 19 (1–2): 73–7. PMID 16178278.
- Bucur O, Ray S, Bucur MC, Almasan A (2006). "APO2 ligand/tumor necrosis factor-related apoptosis-inducing ligand in prostate cancer therapy". Front. Biosci. 11: 1549–68. doi:10.2741/1903. PMID 16368536.
External links
- [3] Apoptosis, Trail & Caspase 8 - The Proteolysis Map-animation
- PDB 1D2Q
- TRAIL Protein at the US National Library of Medicine Medical Subject Headings (MeSH)
PDB gallery
|
|
|
1d0g: CRYSTAL STRUCTURE OF DEATH RECEPTOR 5 (DR5) BOUND TO APO2L/TRAIL
|
|
1d2q: CRYSTAL STRUCTURE OF HUMAN TRAIL
|
|
1d4v: Crystal structure of trail-DR5 complex
|
|
1dg6: CRYSTAL STRUCTURE OF APO2L/TRAIL
|
|
1du3: Crystal structure of TRAIL-SDR5
|
|
|
|
Cell signaling: cytokines
|
|
By family |
|
|
By function/
cell |
|
|
Index of signal transduction
|
|
Description |
- Intercellular
- neuropeptides
- growth factors
- cytokines
- hormones
- Cell surface receptors
- ligand-gated
- enzyme-linked
- G protein-coupled
- immunoglobulin superfamily
- integrins
- neuropeptide
- growth factor
- cytokine
- Intracellular
- adaptor proteins
- GTP-binding
- MAP kinase
- Calcium signaling
- Lipid signaling
- Pathways
- hedgehog
- Wnt
- TGF beta
- MAPK ERK
- notch
- JAK-STAT
- apoptosis
- hippo
- TLR
|
|
|