出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/05/22 12:02:45」(JST)
この項目では、一般的な概念について記述しています。「流れ」「ながれ」のその他の用法については「流れ (曖昧さ回避)」をご覧ください。 |
流れ(ながれ)とは:
本記事では1.2.3 あたりを中心に、だがその他も含めて広く解説する。
目次
|
流れとは何かの移り動きである。
歴史的に見れば人類にとっては水の流れや空気の流れが馴染み深い。人類は小川、川、河などの流れを見てきた歴史があるし、自分たちを包み込んでいる空気の流れを風として感じてきた歴史がある。水や空気は人類にとって液体や気体の代表である。こうした流れは人々に様々なインスピレーションを与えてきた。川の流れなどに着想を得た文学作品は多数存在する[4]。これは画家や技術者にもさまざまなインスピレーションを与えてきたらしい。レオナルド・ダ・ビンチも水の流れのスケッチをいくつも残した[5]。
現代の工学的観点から説明すると、液体や気体は一定の形をもたず運動と変形をつづけるので、それらふたつ(液体・気体)を総称して流体と呼ぶ。特に、流体の運動/静止や流体が流体中の物体に及ぼす影響などを集中的に研究する学問が流体工学である。
工学的な観点からすると「流れ」はどのように位置づけられるか説明すると、何かを「非常に多くの粒子が運動している系」と考えられるときでも、個々の粒子すべてについて運動を記述しようとしたのでは独立変数の数が多すぎて容易に扱うことができない。そこで巨視的な視点に立って、系全体での粒子の挙動・運動の“傾向”を捉え概念化したものが「流れ」、ということになる。流動現象のほかに、拡散などを含めることもある。
流体力学以外にも流れを扱う工学分野、あるいは流体力学と密接な関連があったり、それなりの重なりがある工学分野はいくつもあり、たとえば船舶工学は船舶とそのまわりの水の流れに重点において「流れ」を扱い、航空工学では航空機に関する空気などの「流れ」を扱う。
流体工学を離れて工学全般に関して言えば、「流れ」として扱う対象は、液体、気体などの他に、人や車を一種の「構成粒子」と見立ててその物理的な移動を「流れ」として扱うこともある。車の流れについては特に交通工学が扱っている。
なお、必ずしも人間が直感的に把握できるような速さやサイズのものだけが「流れ」とされているわけではない。例えば、氷河の一年に数メートルしか動かない動きも「流れ」であるし、合成樹脂の長期間による変形も「流れ」として把握されることもあるし、地球内部のマントルの動きなど、人間の日常感覚から比べるときわめて長い時間、大きな空間で把握したものも「流れ」として把握されていることがある。
なお、上で述べた合成樹脂などの固体が移り動くことや、コロイド溶液などの動きなどは、前述のような「多数の粒子の自由運動と見なす」ような単純な見方では把握できない、もっと複雑なことが起きている。こうした動きは「非ニュートン流動」「非ニュートン流れ」などと呼ばれ、レオロジーという学問領域で研究されている。
熱のように比較的抽象性の高いことについても、数値的に表し「流れ」として把握することも行われている。また、人間の社会的な所属など抽象的な位置の移りかわりについても「流れ」として分析されることがある。
海流・潮汐、大気の動きは流れとして把握することができ、地球物理学、気象学などで研究されている。地球内部では、マントルとよばれる液状金属が流れていることが知られており、こうしたことは、電磁流体力学や地球物理学などで研究されている。また、太陽風、銀河の運動など、宇宙空間で起きていることでも「流れ」として把握できることは多々あり、天文学、天体物理学等々で研究されている。
お金の流れの把握には様々なものがあるが、例えば現金の流れについては「キャッシュ・フロー」として、会計学、経理の実務領域、経営学等で扱われている。
流れの原因は様々である、物体的な流れの場合では、(物体は一旦動きだせば慣性の法則で動きつづける性質があり、流体は自在に変形しながら動き続ける性質があり、それは働いていることを前提として)たとえば川の流れなどの場合はおおむね重力(水の重さ自体)が主な原因になっている。風の場合、いくつか要因はあるが主として気圧の差。上昇気流・下降気流は空気の温度による重さの差。電流の場合も様々ありうるが、例えば電圧(電位差)が原因のひとつとしてあげられる。物質の拡散の場合には主として濃度差。人の流れの場合は、一方で何か人が魅力と感じる要素(様々な意味での“環境”の良さ、その内容は多岐に渡る)が誘因になりそこへ近づく方向の流れを引き起こし、他方である場所の“環境”の悪さ(たとえば地方政府や中央政府による悪政、犯罪率の高さ、原子力発電所事故による放射能汚染、等々等々)がそこから離れる流れ(移住、国外脱出、難民 等々の傾向)を引き起こす。
では次に、工学的な知識などを中心に説明する。
流れを、音速に対する速さの比によって分類することがある。「流れの速さ=音速」の時がマッハ 1.0である。
流れは粘性の有無によっても分類されることがある。
粘性流れはさらに、レイノルズ数によって層流と乱流に区別され、レイノルズ数の値がある程度小さいと層流になり、大きいと乱流と判断される。
水が気泡を含んでいたり、水の中に固体が多数浮かんでいる状態で流れていると、それはそれで独特の性質を持つ。2種以上のものが混じった状態を、複数の「相」が全体の流れを作っていると見なして「混相流」と呼んで研究されている。
流れの様子は肉眼では直接観察できないことが多いため、速度場や温度場などを視覚的に表現する流れの可視化が行われる。速度計や温度計による計測では空間上のある一点での値を求めるが、可視化の場合はある範囲(二次元面あるいは三次元空間)の情報を必要とする。ただし、速度計として使われることが多いピトー管であっても、トラバース(移動)することで空間的な速度場を得るなど、技術的に重複する場合もある。
また、現実の流れ場を計測する場合のほかに、数値流体力学 (CFD) によるシミュレーション結果を画像で表現することも可視化と呼ばれる。CFDの特徴として、三次元計算の場合は空間内の値が(格子/粒子のあるところについては)全て求まることが挙げられる。したがって、三次元的な速度場情報から、流線や渦度の等値面、あるいは流跡線 (particle path) などを直接生成・可視化できる。
煙による翼端渦の可視化例。ロッキード L-1011の翼端から煙を放出している
煙による翼端渦の可視化例。地面に置かれた色つきの煙を農業機が巻き上げている
水槽実験の様子。F/A-18の1/48模型表面の流れを、染料により可視化している
F/A-18実験機による飛行試験。機首付近からは煙が流され、垂直尾翼にはタフトが張られている
タフトによる速度場の可視化例。KC-135Aのウィングレットに複数のタフトが張られている
数値流体力学における可視化例。大気圏再突入の際のスペースシャトルまわりの流れの可視化
この節は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(2012年3月) |
また勝負事では「流れ」という言葉を使って、勝ち負けを決定する何かを表すことがある。例えば勝ちが続けば「流れが良い」、負けが続けば「流れが悪い」と表現する。特に運で決定されるギャンブルではこの言葉を使うことが多い。例えばルーレットで赤が続いたら「赤の流れになっている」と考えて赤に賭けるという考え方をする人も多い。
こちらの「流れ」は人間の流れよりもさらに確定不能であり、存在しないと主張する人も多い。
例えば、バスケットボールにおいては、一度シュートを決めた選手は他の選手に比べてその後もシュートを決めやすくなるという「ホットハンド」という流れのような存在が一般的に信じられている。 だが、アメリカの心理学者トーマス・ギロビッチが、実際にNBAフィラデルフィア・セブンティシクサーズの1980-1981年シーズンのフィールド・ゴール、およびボストン・セルティックスの1980-1981年、1981-1982年シーズンのフリースローを統計分析したところ、シュートが連続して決まる確率に偶然の域を出るものは無く、シュートは完全なる独立試行であることが明らかとなった。このように本当は何ら意味の無い情報の中から何らかのパターンを見出してしまう現象のことをクラスター錯覚(en:clustering illusion)と呼ぶ。クラスター錯覚は認知バイアスの一種であり、統計データから誤った解釈を導き出す原因となる。また、クラスター錯覚のような「まやかしの有意性」から理屈を組み立ててしまうことを「テキサスの射撃手の誤謬」(en:Texas sharpshooter fallacy)と呼ぶ。
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「現在」「流動」「flow」「current」「stream」 |
拡張検索 | 「流れる」「流れ図」 |
.