出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/12/23 14:00:24」(JST)
「空気圧」はこの項目へ転送されています。圧縮空気を用いて装置を駆動する方式については「空圧」をご覧ください。 |
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(2011年7月) |
気圧(きあつ、英語: air pressure[1])とは、気体の圧力のことである。単に「気圧」という場合は、大気圧(たいきあつ、英語: atmospheric pressure[1]、大気の圧力)のことを指す場合が多い。
気体の圧力は、温度や体積の影響を受ける。例えば、気体を一定の体積のまま(容器に閉じ込めた状態に相当する)加熱すると、気圧は温度とほぼ比例して上昇する。このような、気圧と体積、温度についての関係は、ボイルの法則、シャルルの法則、ボイル=シャルルの法則などにより示されている。
気体の圧力は、混合気体の場合、構成している気体のそれぞれの圧力(分圧)の合計となる。
空気も物質であるため、質量があり、地球をおおっている大気の層によって、海面では、面積1cm2あたり約1kg(水銀柱で約76cm、水の場合約10mに相当)の圧力がかかる。これを大気圧または単に気圧という。高所ほど、その上方にある空気柱の高さが低くなるので、気圧は低くなる。海面での大気圧を 1 とする圧力の単位としても用いられる。
海上の水蒸気蒸発によって、上昇気流が発生する箇所の空気の密度がやや下がり、気圧がやや低くなることがあるなど、同じ海抜高度でも、少しずつ気圧は異なり、気圧の高低は常に変化する。この気圧の山や谷を高気圧、低気圧と呼ぶ。気圧の差が生じると、高気圧の空気が低気圧の領域に流れ込む。これが風のおもな成因になっている。
気圧の測定には気圧計やラジオゾンデを用いる(気象業務法第1条の2、気象業務法第1条の3も参照)。
気象情報では、気圧の単位は、かつてはCGS単位系のミリバール(mb)、水銀柱ミリメートル(mmHg, torr)が使われていたが、現在は国際単位系(SI)のヘクトパスカル(hPa)が使用されている。
大気圧は高度や緯度によっても変化する。標準大気圧(1気圧)は海面上で 1013.25 hPa とされるが、大気圧は上方の空気の重みを示す圧力であるから、高所へいくほど低下する。高度上昇と気圧低下の比率は、低高度では概ね 10 m の上昇に対して 1 hPa であり、計算上富士山頂で約0.7気圧、高度5,500 m で約0.5気圧、エベレストの頂上では約0.3気圧になる。ただし、高度により(気圧により)空気の密度が異なるため、高度上昇に対する気圧低下の比率は一定ではない。高度が上がるに従い、高度上昇と気圧低下の比は緩やかなものとなる。このような高度による気圧の変化を利用した高度計も作られている。
また、大気が太陽光などの熱により、局所的に加熱される場合、体積が増して密度が低下する。膨張した軽い空気は周囲の重い空気により押し上げられるため、上昇気流を生む。逆に大気が冷却されると、体積が減少、密度が増して沈降し下降気流を生む。
緯度により、大気および地表が太陽から受ける熱のエネルギー密度は異なる。赤道周辺が、年間を通じて大気が暖められ高温であるのと比較し、極地周辺は、常に低温である。このような緯度による大気の温度差により、赤道直下や極地では特有の上昇流、下降流が生じ、それぞれ熱帯収束帯や極高圧帯を形成する。気圧差によって、高気圧地域から低気圧地域に向けて風が吹き、貿易風や偏西風、極東風となる。これらは、ハドレー循環(熱帯収束帯と亜熱帯高圧帯間)、フェレル循環(亜熱帯高圧帯と高緯度低圧帯間)、極循環(高緯度低圧帯と極高圧帯間)と呼ばれる。このような大気の大規模な循環を、大気循環と呼ぶ。また、海洋と陸地とを比較すると、海水の熱容量の大きさから、海洋は陸地より温度変化が少ない。よって、太陽光が強い状況では、陸地が海洋より高温になることが多く、陸地に低気圧、海洋に高気圧の配置となり、海洋から陸地に向け風が吹く。陸地が冷却される状況では、この逆である。これにより、海陸風やモンスーンが発生する。
その他、数々の日常事象や生命現象は、大気の圧力のもとで適応、利用されている。
詳細は「標準気圧」を参照
気圧(きあつ) | |
---|---|
記号 | atm |
系 | 非SI単位 |
量 | 圧力 |
定義 | 101 325 Pa |
テンプレートを表示 |
上述のように、海面での大気圧は圧力(特に気圧や水圧)の単位としても用いられる。海面での大気圧を「1 気圧」とする。大気を意味する atmosphere から、atm という記号が使われ、「エー・ティー・エム」又は「アトム」と読まれる。
単位としての「気圧」の元々の定義は「海面での大気圧」であるが、大気圧は場所や気象条件によって異なる。そこで、海面での大気圧の標準の値として標準大気圧を定め、この値を1気圧と定義している。標準大気圧は、1954年の第10回国際度量衡総会(CGPM)において、101 325 パスカル(Pa)と定められている。これは、760 水銀柱ミリメートル(mmHg)をパスカルに換算し、小数点以下の端数を切り捨てたものである。よって、760 水銀柱ミリメートル とは厳密には異なるが、その差は微少なものである。トル(Torr)は標準大気圧の760分の1と定義されている[2]ので、1 気圧 = 101 325 パスカル = 760 トル ということになる。
また、1 気圧 は 1 バール に数値が近い(1atm = 正確に1.01325 バールである。1.325%の差がある。)ことから、日常語では気圧の代わりにバールということがある。
ウィクショナリーに大気圧の項目があります。 |
ウィキメディア・コモンズには、気圧に関連するカテゴリがあります。 |
|
パスカル(SI単位) | バール | 工学気圧 | 気圧 | トル | psi | |
---|---|---|---|---|---|---|
1 Pa | ≡ 1 N/m² | = 10-5 bar | ≈ 10.2×10-6 at | ≈ 9.87×10-6 atm | ≈ 7.5×10-3 Torr | ≈ 145×10-6 psi |
1 bar | = 100 000 Pa | ≡ 106 dyn/cm² | ≈ 1.02 at | ≈ 0.987 atm | ≈ 750 Torr | ≈ 14.504 psi |
1 at | = 98 066.5 Pa | = 0.980665 bar | ≡ 1 kgf/cm² | ≈ 0.968 atm | ≈ 736 Torr | ≈ 14.223 psi |
1 atm | = 101325 Pa | = 1.01325 bar | ≈ 1.033 at | ≡ p0 | = 760 Torr | ≈ 14.696 psi |
1 Torr | ≈ 133.322 Pa | ≈ 1.333×10-3 bar | ≈ 1.360×10-3 at | ≈ 1.316×10-3 atm | ≡ 1 mmHg | ≈ 19.337×10-3 psi |
1 psi | ≈ 6894.757 Pa | ≈ 68.948×10-3 bar | ≈ 70.307×10-3 at | ≈ 68.046×10-3 atm | ≈ 51.7149 Torr | ≡ 1 lbf/in² |
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
国試過去問 | 「097G026」 |
リンク元 | 「摂氏」「atmosphere」「大気」「気圧障害」「atm」 |
拡張検索 | 「高気圧酸素療法」「高気圧酸素治療」「中耳気圧外傷」「大気圧」 |
関連記事 | 「圧」 |
A
※国試ナビ4※ [097G025]←[国試_097]→[097G027]
テンプレート:単位
セルシウス度(セルシウスど、記号:℃/°C)は、温度(セルシウス温度)の物理単位である。欧米では考案者の名前からセルシウス度と呼ばれており、日本などではセルシウスを中国語で書いた摂爾修から摂氏温度(せっしおんど、せしおんど)ともいう。
現在の定義は、「ケルビン(K)で表した熱力学温度の値から273.15を減じたもの」である。元々の定義は水の凝固点を0度、沸点を100度とするものであった(詳しくは#歴史を参照)。
例えばセルシウス度による温度は、日本語では「15℃」または「摂氏15度」という。「C」または「摂氏」を省略しない書き方が正式であるが、日常生活においては単に「15度」と表現することも多く、同様に「度」という表現を用いるファーレンハイト度(華氏温度)や角度と混同される恐れがある。英語では"fifteen degrees Celsius" と読み、"15 deg C"と略記する。日本語の場合にも科学の学術の発音では上記誤解を避けるため「ドシー」と呼ぶこともある。
セルシウス度はスウェーデン人のアンデルス・セルシウスが1742年に考案したものに基づいている。当初は1気圧下における水の凝固点を100℃、沸点を0℃として、その間を100等分し、低温領域、高温領域に伸ばしていた。しかしその後、定義は凝固点を0℃、沸点を100℃とする現在の方式に改められた。これは、カール・フォン・リンネか、セルシウスの用いていた殆どの温度計の製作者であるDaniel Ekstromの換言によるものかもしれないといわれている。
水の沸点と融点の間に100の目盛があることから、この体系のもともとの名称はcentigrade(「百分度」の意)であったテンプレート:要出典。しかし1948年の第9回国際度量衡総会にて、名称が正式にセルシウスへと変更になった。これには、セルシウス自身の認知のためと、SI接頭辞であるセンチ (centi) との衝突からくる混乱(centigradeがgradeという単位の100分の1と勘違いされる)を避けるという目的があった。
その後の物理的な計測方法の進歩と熱力学温度の採用により、現在の定義は「ケルビンで表した熱力学温度の値から273.15を減じたもの」となっている。つまり、水の三重点を0.01℃とし、水の三重点と絶対零度の温度差の273.16分の1を1℃としている。「273.16分の1」という数字は、セルシウス度における1度の温度差をそのままケルビンの1度の温度差として使用するためのものである。すなわち、セルシウス度とケルビンの目盛の幅(1度の温度差)は等しい。なお、この定義により、水の沸点はちょうど100℃から99.974℃に変更された。
セルシウス度は日常の様々なところで用いられているが、英国やアイルランドの放送メディアの中にはセンチグレードと呼ぶところも多い。アメリカのメディアだけは依然単独でファーレンハイト度を用いている。
セルシウス度からファーレンハイト度への換算 <math>F=1.8C+32</math>
ファーレンハイト度からセルシウス度への換算 <math>\textstyle C=\frac{5}{9}(F-32)</math>
-40℃と-40℉が等しいことを利用した、別の換算方法もある。 <math>\textstyle C=\frac{(F+40)}{1.8}-40</math>
テンプレート:温度の単位の比較
記号 | Unicode | JIS X 0213 | 文字参照 | 名称
テンプレート:CharCode |
---|
.