出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/06/20 13:06:20」(JST)
ある生物種集団のゲノム塩基配列中に一塩基が変異した多様性が見られ、その変異が集団内で1%以上の頻度で見られる時、これを一塩基多型(いちえんき・たけい、SNP : Single Nucleotide Polymorphism)と呼ぶ。従って、対立遺伝子頻度がこれより低いときに使用するのは基本的に誤りで、そのような物は突然変異と呼ばれる(参照:多型)。ある一つの塩基が別の塩基に置換されて起きるため、一つのSNPには置換前と置換後の二種類の対立遺伝子しか見つからないことが多い。が、まれに3から4個の対立遺伝子があるSNPもある。複数形でSNPs(スニップスと発音)と呼ばれることもある。SNPの起源は中立進化説がいうように、種の分化後にランダムに発生したものだと考えられている。
ヒトの染色体にはおよそ30億の塩基対があるが、その配列は個人間(相同染色体間)で異なっている。その量は1000塩基に1つ程度である。SNP から遺伝的背景を調べることができる他、原因遺伝子のわかっている遺伝病については、将来的な危険率も診断することができる。また、SNP を利用して連鎖解析や関連解析によって疾患関連遺伝子の特定が行えると期待されている。 検出法としては古くは制限酵素断片長多型法(RFLP法)が用いられたが、操作が煩雑で長時間を要する上、SNP部位近辺の塩基配列によっては解析不可能な場合が多いなど、臨床検査の現場で使用するには問題の多いことが指摘されてきた。そこで近年では、より簡便で汎用性のある手法としてInvader法、TaqMan PCR法、一塩基伸長法、Pyrosequencing法、Exonuclease Cycling Assay法など種々の方法が開発されている。 アルコールに対する強さなどの遺伝的な要因は、主にアルデヒドデヒドロゲナーゼ遺伝子(ALDH2)の SNP に依存することが知られている。臨床での応用が期待される遺伝子のSNPも近年多く見出されており、多くの薬剤代謝に関与する酵素チトクロームP450(CYP)のファミリーや抗結核薬イソニアジドの代謝に関与するN-acetyltransferase 2 (NAT-2)、経口抗凝固剤ワーファリンの効果の強さに大きく影響するCYP2C9とVKORC1などがそれである。これらの遺伝子にその酵素活性を低下させるようなSNPがあると、薬剤の血中濃度が長時間に渡って高く保たれた結果、効果が強く発現したり、有毒な中間代謝産物が蓄積されたりすることがある。また、薬剤がうまく働くことのできないようなSNPがあると、投薬量を増やすなどの処置が必要となる。そこで、投薬前にこのような遺伝子のSNPを検査し、その遺伝子の型から判断して適切な薬剤の投薬量を決定するなどして、副作用を回避し、効率的な治療効果を得ようとする医療、すなわち、遺伝情報による患者個々の体質に応じたより適切な医療は「テーラーメイド医療」、「オーダメイド医療」、あるいは「個別化医療」と呼ばれており、これによって患者が無用の副作用によって苦しむことが減り、また、無用な副作用への対処や不適切な投薬を減らすことによって医療費削減への効果も期待できる。このように、SNPを利用した診断の実用化と普及が大いに期待されている。
この項目は、生物学に関連した書きかけの項目です。この記事を加筆・訂正などしてくださる協力者を求めています(プロジェクト:生命科学/Portal:生物学)。 |
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「SNP」「一塩基遺伝子多型」「スニップ」「single nucleotide polymorphism」 |
拡張検索 | 「一塩基多型解析」 |
関連記事 | 「型」「多型」「一塩基」 |
.