Transferrin |
PDB rendering based on 1a8e.
|
Available structures |
PDB |
Ortholog search: PDBe, RCSB |
List of PDB id codes |
1A8E, 1A8F, 1B3E, 1BP5, 1BTJ, 1D3K, 1D4N, 1DTG, 1FQE, 1FQF, 1JQF, 1N7W, 1N7X, 1N84, 1OQG, 1OQH, 1RYO, 1SUV, 2HAU, 2HAV, 2O7U, 2O84, 3FGS, 3QYT, 3S9L, 3S9M, 3S9N, 3SKP, 3V83, 3V89, 3V8X, 3VE1, 4H0W, 4X1B, 4X1D
|
|
|
Identifiers |
Symbols |
TF ; PRO1557; PRO2086; TFQTL1 |
External IDs |
OMIM: 190000 MGI: 98821 HomoloGene: 68153 ChEMBL: 4865 GeneCards: TF Gene |
Gene ontology |
Molecular function |
• protein binding
• ferric iron binding
• ferric iron transmembrane transporter activity
• transferrin receptor binding
|
Cellular component |
• extracellular region
• extracellular space
• early endosome
• late endosome
• coated pit
• basal plasma membrane
• cell surface
• endosome membrane
• cytoplasmic membrane-bounded vesicle
• apical plasma membrane
• endocytic vesicle
• vesicle
• secretory granule lumen
• basal part of cell
• perinuclear region of cytoplasm
• recycling endosome
• extracellular exosome
• blood microparticle
• HFE-transferrin receptor complex
|
Biological process |
• retina homeostasis
• platelet degranulation
• cellular iron ion homeostasis
• actin filament organization
• activation of JUN kinase activity
• blood coagulation
• platelet activation
• osteoclast differentiation
• regulation of protein stability
• transferrin transport
• positive regulation of bone resorption
• positive regulation of transcription, DNA-templated
• transmembrane transport
• SMAD protein signal transduction
• ERK1 and ERK2 cascade
• positive regulation of cell motility
|
Sources: Amigo / QuickGO |
|
RNA expression pattern |
|
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
Entrez |
7018 |
22041 |
Ensembl |
ENSG00000091513 |
ENSMUSG00000032554 |
UniProt |
P02787 |
Q921I1 |
RefSeq (mRNA) |
NM_001063 |
NM_133977 |
RefSeq (protein) |
NP_001054 |
NP_598738 |
Location (UCSC) |
Chr 3:
133.75 – 133.78 Mb |
Chr 9:
103.2 – 103.23 Mb |
PubMed search |
[1] |
[2] |
|
Transferrin |
Identifiers |
Symbol |
Transferrin |
Pfam |
PF00405 |
InterPro |
IPR001156 |
PROSITE |
PDOC00182 |
SCOP |
1lcf |
SUPERFAMILY |
1lcf |
OPM superfamily |
161 |
OPM protein |
1lfc |
Available protein structures: |
Pfam |
structures |
PDB |
RCSB PDB; PDBe; PDBj |
PDBsum |
structure summary |
|
Transferrins are iron-binding blood plasma glycoproteins that control the level of free iron in biological fluids.[1] Human transferrin is encoded by the TF gene.[2]
Transferrin glycoproteins bind iron tightly, but reversibly. Although iron bound to transferrin is less than 0.1% (4 mg) of total body iron, it forms the most vital iron pool with the highest rate of turnover (25 mg/24 h). Transferrin has a molecular weight of around 80 KDa and contains two specific high-affinity Fe(III) binding sites. The affinity of transferrin for Fe(III) is extremely high (1023 M−1 at pH 7.4)[3] but decreases progressively with decreasing pH below neutrality.
When not bound to iron, transferrin is known as "apotransferrin" (see also apoprotein).
Contents
- 1 Transport mechanism
- 2 Structure
- 3 Tissue distribution
- 4 Immune system
- 5 Role in disease
- 6 Other effects
- 7 Pathology
- 8 Reference ranges
- 9 Interactions
- 10 Related proteins
- 11 See also
- 12 References
- 13 Further reading
- 14 External links
Transport mechanism
When a transferrin protein loaded with iron encounters a transferrin receptor on the surface of a cell (e.g., to erythroid precursors in the bone marrow), it binds to it and, as a consequence, is transported into the cell in a vesicle by receptor-mediated endocytosis. The pH of the vesicle is reduced by hydrogen ion pumps (H+
ATPases) to about 5.5, causing transferrin to release its iron ions. The receptor (with its ligand, transferrin, bound) is then transported through the endocytic cycle back to the cell surface, ready for another round of iron uptake. Each transferrin molecule has the ability to carry two iron ions in the ferric form (Fe3+
).
The gene coding for transferrin in humans is located in chromosome band 3q21.[2]
Medical professionals may check serum transferrin level in iron deficiency and in iron overload disorders such as hemochromatosis.
Structure
In humans, transferrin consists of a polypeptide chain containing 679 amino acids. The protein is composed of alpha helices and beta sheets that form two domains.[4] The N- and C- terminal sequences are represented by globular lobes and between the two lobes is an iron-binding site.
The amino acids which bind the iron ion to the transferrin are identical for both lobes; two tyrosines, one histidine, and one aspartic acid. For the iron ion to bind, an anion is required, preferably carbonate (CO2−
3).[4]
Transferrin also has a transferrin iron-bound receptor; it is a disulfide-linked homodimer.[5] In humans, each monomer consists of 760 amino acids. It enables ligand bonding to the transferrin, as each monomer can bind to one or two molecules of iron. Each monomer consists of three domains: the protease, the helical, and the apical domains. The shape of a transferrin receptor resembles a butterfly based on the intersection of three clearly-shaped domains.[4]
-
Transferrin bound to its receptor.[6]
-
Transferrin receptor complex.[7]
Tissue distribution
The liver is the main site of transferrin synthesis but other tissues and organs, including the brain, also produce transferrin. The main role of transferrin is to deliver iron from absorption centers in the duodenum and white blood cell macrophages to all tissues. Transferrin plays a key role in areas where erythropoiesis and active cell division occur.[5] The receptor helps maintain iron homeostasis in the cells by controlling iron concentrations.[5]
Immune system
Transferrin also associated with the innate immune system. It is found in the mucosa and binds iron, thus creating an environment low in free iron that impedes bacterial survival in a process called iron withholding. The level of transferrin decreases in inflammation.[8]
Role in disease
An increased plasma transferrin level is often seen in patients suffering from iron deficiency anemia.[5] A decreased plasma transferrin can occur in iron overload diseases and protein malnutrition. An absence of transferrin results from a rare genetic disorder known as atransferrinemia, a condition characterized by anemia and hemosiderosis in the heart and liver that leads to heart failure and many other complications.
Most recently, transferrin and its receptor have been shown to diminish tumour cells when the receptor is used to attract antibodies.[5]
Other effects
The metal-binding properties of transferrin have a great influence on the biochemistry of plutonium in humans.
Carbohydrate deficient transferrin increases in the blood with heavy ethanol consumption and can be monitored through laboratory testing.[9]
Pathology
Atransferrinemia is associated with a deficiency in transferrin.
In nephrotic syndrome, urinary loss of transferrin, along with other serum proteins such as thyroxine-binding globulin, gammaglobulin, and anti-thrombin III, can manifest as iron-resistant microcytic anemia.
Reference ranges
An example reference range for transferrin is 204–360 mg/dL.[10] Laboratory test results should always be interpreted using the reference range provided by the laboratory that performed the test.
Reference ranges for blood tests, comparing blood content of transferrin and other iron-related compounds (shown in brown and orange) with other constituents
A high transferrin level may indicate an iron deficiency anemia. Levels of serum iron and total iron binding capacity (TIBC) are used in conjunction with transferrin to specify any abnormality. See interpretation of TIBC.
Interactions
Transferrin has been shown to interact with insulin-like growth factor 2[11] and IGFBP3.[12] Transcriptional regulation of transferrin is upregulated by retinoic acid.[13]
Related proteins
Members of the family include blood serotransferrin (or siderophilin, usually simply called transferrin); lactotransferrin (lactoferrin); milk transferrin; egg white ovotransferrin (conalbumin); and membrane-associated melanotransferrin.[14]
See also
- Beta-2 transferrin
- Transferrin receptor
- Total iron-binding capacity
- Transferrin saturation
- Ferritin
References
- ^ Crichton RR, Charloteaux-Wauters M (1987). "Iron transport and storage". Eur. J. Biochem. 164 (3): 485–506. doi:10.1111/j.1432-1033.1987.tb11155.x. PMID 3032619.
- ^ a b Yang F, Lum JB, McGill JR, Moore CM, Naylor SL, van Bragt PH, Baldwin WD, Bowman BH (May 1984). "Human transferrin: cDNA characterization and chromosomal localization". Proceedings of the National Academy of Sciences of the United States of America 81 (9): 2752–6. doi:10.1073/pnas.81.9.2752. PMC 345148. PMID 6585826.
- ^ Aisen P, Leibman A, Zweier J (March 1978). "Stoichiometric and site characteristics of the binding of iron to human transferrin" (PDF). J. Biol. Chem. 253 (6): 1930–7. PMID 204636.
- ^ a b c "Transferrin Structure". St. Edward's University. 2005-07-18. Retrieved 2009-04-24.
- ^ a b c d e Macedo MF, de Sousa M (March 2008). "Transferrin and the transferrin receptor: of magic bullets and other concerns". Inflammation & Allergy Drug Targets 7 (1): 41–52. doi:10.2174/187152808784165162. PMID 18473900.
- ^ PDB: 1suv ; Cheng Y, Zak O, Aisen P, Harrison SC, Walz T (February 2004). "Structure of the human transferrin receptor-transferrin complex". Cell 116 (4): 565–76. doi:10.1016/S0092-8674(04)00130-8. PMID 14980223.
- ^ PDB: 2nsu ; Hafenstein S, Palermo LM, Kostyuchenko VA, Xiao C, Morais MC, Nelson CD, Bowman VD, Battisti AJ, Chipman PR, Parrish CR, Rossmann MG (April 2007). "Asymmetric binding of transferrin receptor to parvovirus capsids". Proceedings of the National Academy of Sciences of the United States of America 104 (16): 6585–9. doi:10.1073/pnas.0701574104. PMC 1871829. PMID 17420467.
- ^ Ritchie RF, Palomaki GE, Neveux LM, Navolotskaia O, Ledue TB, Craig WY (1999). "Reference distributions for the negative acute-phase serum proteins, albumin, transferrin and transthyretin: a practical, simple and clinically relevant approach in a large cohort". J. Clin. Lab. Anal. 13 (6): 273–9. doi:10.1002/(SICI)1098-2825(1999)13:6<273::AID-JCLA4>3.0.CO;2-X. PMID 10633294.
- ^ Sharpe PC (November 2001). "Biochemical detection and monitoring of alcohol abuse and abstinence". Ann. Clin. Biochem. 38 (Pt 6): 652–64. doi:10.1258/0004563011901064. PMID 11732647.
- ^ "Normal Reference Range Table". Interactive Case Study Companion to Pathlogical Basis of Disease. The University of Texas Southwestern Medical Center at Dallas. Retrieved 2008-10-25.
Kumar V, Hagler HK (1999). Interactive Case Study Companion to Robbins Pathologic Basis of Disease (6th Edition (CD-ROM for Windows & Macintosh, Individual) ed.). W B Saunders Co. ISBN 0-7216-8462-9.
- ^ Storch S, Kübler B, Höning S, Ackmann M, Zapf J, Blum W, Braulke T (December 2001). "Transferrin binds insulin-like growth factors and affects binding properties of insulin-like growth factor binding protein-3". FEBS Lett. 509 (3): 395–8. doi:10.1016/S0014-5793(01)03204-5. PMID 11749962.
- ^ Weinzimer SA, Gibson TB, Collett-Solberg PF, Khare A, Liu B, Cohen P (April 2001). "Transferrin is an insulin-like growth factor-binding protein-3 binding protein". J. Clin. Endocrinol. Metab. 86 (4): 1806–13. doi:10.1210/jcem.86.4.7380. PMID 11297622.
- ^ Hsu SL, Lin YF, Chou CK (April 1992). "Transcriptional regulation of transferrin and albumin genes by retinoic acid in human hepatoma cell line Hep3B". Biochem. J. 283 (2): 611–5. PMC 1131079. PMID 1315521.
- ^ M Ching-Ming Chung (October 1984). "Structure and function of transferrin". Biochemical Education 12 (4): 146–154. doi:10.1016/0307-4412(84)90118-3.
Further reading
- Hershberger CL, Larson JL, Arnold B et al. (1992). "A cloned gene for human transferrin". Annals of the New York Academy of Sciences 646: 140–54. doi:10.1111/j.1749-6632.1991.tb18573.x. PMID 1809186.
- Bowman BH, Yang FM, Adrian GS (1989). "Transferrin: evolution and genetic regulation of expression". Adv. Genet. Advances in Genetics 25: 1–38. doi:10.1016/S0065-2660(08)60457-5. ISBN 9780120176250. PMID 3057819.
- Parkkinen J, von Bonsdorff L, Ebeling F, Sahlstedt L (2003). "Function and therapeutic development of apotransferrin". Vox Sang. 83 (Suppl 1): 321–6. doi:10.1111/j.1423-0410.2002.tb05327.x. PMID 12617162.
External links
- Transferrin at the US National Library of Medicine Medical Subject Headings (MeSH)
PDB gallery
|
|
|
1a8e: HUMAN SERUM TRANSFERRIN, RECOMBINANT N-TERMINAL LOBE
|
|
1a8f: HUMAN SERUM TRANSFERRIN, RECOMBINANT N-TERMINAL LOBE
|
|
1b3e: HUMAN SERUM TRANSFERRIN, N-TERMINAL LOBE, EXPRESSED IN PICHIA PASTORIS
|
|
1bp5: HUMAN SERUM TRANSFERRIN, RECOMBINANT N-TERMINAL LOBE, APO FORM
|
|
1btj: HUMAN SERUM TRANSFERRIN, RECOMBINANT N-TERMINAL LOBE, APO FORM, CRYSTAL FORM 2
|
|
1d3k: HUMAN SERUM TRANSFERRIN
|
|
1d4n: HUMAN SERUM TRANSFERRIN
|
|
1dtg: HUMAN TRANSFERRIN N-LOBE MUTANT H249E
|
|
1fqe: CRYSTAL STRUCTURES OF MUTANT (K206A) THAT ABOLISH THE DILYSINE INTERACTION IN THE N-LOBE OF HUMAN TRANSFERRIN
|
|
1fqf: CRYSTAL STRUCTURES OF MUTANT (K296A) THAT ABOLISH THE DILYSINE INTERACTION IN THE N-LOBE OF HUMAN TRANSFERRIN
|
|
1jqf: Human Transferrin N-Lobe Mutant H249Q
|
|
1n7w: Crystal Structure of Human Serum Transferrin, N-Lobe L66W mutant
|
|
1n7x: HUMAN SERUM TRANSFERRIN, N-LOBE Y45E MUTANT
|
|
1n84: HUMAN SERUM TRANSFERRIN, N-LOBE
|
|
1oqg: Crystal structure of the D63E mutant of the N-lobe human transferrin
|
|
1oqh: Crystal Structure of the R124A mutant of the N-lobe human transferrin
|
|
1ryo: Human serum transferrin, N-lobe bound with oxalate
|
|
1suv: Structure of Human Transferrin Receptor-Transferrin Complex
|
|
2hau: Apo-Human Serum Transferrin (Non-Glycosylated)
|
|
2hav: Apo-Human Serum Transferrin (Glycosylated)
|
|
2o7u: Crystal structure of K206E/K296E mutant of the N-terminal half molecule of human transferrin
|
|
2o84: Crystal structure of K206E mutant of N-lobe human transferrin
|
|
|
|
Carrier proteins, metalloproteins: iron-binding proteins
|
|
heme |
- Ferritin (Bacterioferritin)
- Lactoferrin
- Transferrin
|
|
nonheme |
- Hemerythrin
- Inositol oxygenase
- Iron-sulfur protein
- Lipoxygenase
- Tyrosine hydroxylase
|
|
Proteins: Globular proteins
|
|
Serum globulins |
Alpha globulins
|
serpins:
|
- alpha-1 (Alpha 1-antichymotrypsin, Alpha 1-antitrypsin)
- alpha-2 (Alpha 2-antiplasmin)
- Antithrombin (Heparin cofactor II)
|
|
carrier proteins:
|
- alpha-1 (Transcortin)
- alpha-2 (Ceruloplasmin)
- Retinol binding protein
|
|
other:
|
- alpha-1 (Orosomucoid)
- alpha-2 (alpha-2-Macroglobulin, Haptoglobin)
|
|
|
Beta globulins
|
carrier proteins:
|
- Sex hormone-binding globulin
- Transferrin
|
|
other:
|
- Angiostatin
- Hemopexin
- Beta-2 microglobulin
- Factor H
- Plasminogen
- Properdin
|
|
|
Gamma globulin
|
|
|
Other
|
- Fibronectin (fFN: Fetal fibronectin)
- Macroglobulin/Microglobulin
- Transcobalamin
|
|
|
Other globulins |
- Beta-lactoglobulin
- Thyroglobulin
- Alpha-lactalbumin
|
|
Albumins |
Egg white
|
- Conalbumin
- Ovalbumin
- Avidin
|
|
Serum albumin
|
- Human serum albumin
- Bovine serum albumin
- Prealbumin
|
|
Other
|
- C-reactive protein
- Lactalbumin (Alpha-lactalbumin)
- Parvalbumin
- Ricin
|
|
|
- see also disorders of globin and globulin proteins
Index of proteins
|
|
Description |
- Proteins
- Membrane
- Globular
- Antibodies
- Fibrous
|
|
|
Acute-phase proteins
|
|
Amyloid |
|
|
Other positive |
- Alpha 1-antichymotrypsin
- Alpha 1-antitrypsin
- Alpha 2-macroglobulin
- C-reactive protein
- Ceruloplasmin
- C3
- Ferritin
- Fibrin
- Haptoglobin
- Hemopexin
- Orosomucoid
|
|
Negative |
- Serum albumin
- Transferrin
|
|
Index of the immune system
|
|
Description |
- Physiology
- cells
- autoantigens
- autoantibodies
- complement
- surface antigens
- IG receptors
|
|
Disease |
- Allergies
- Immunodeficiency
- Immunoproliferative immunoglobulin disorders
- Hypersensitivity and autoimmune disorders
- Neoplasms and cancer
|
|
Treatment |
- Procedures
- Drugs
- antihistamines
- immunostimulants
- immunosuppressants
- monoclonal antibodies
|
|
|
Metabolism: Metal metabolism
|
|
Transition metal |
Iron metabolism |
Absorption in
Duodenum |
Iron(II) oxide: |
- DMT1 (SLC11A2)
- Ferritin
- Hephaestin/Ferroportin (SLC11A3/SLC40A1)
- Transferrin to Transferrin receptor
|
|
Iron(III) oxide: |
- Duodenal cytochrome B
- Integrin
- Calreticulin/mobilferrin
- Ferritin
|
|
|
Other |
Iron-binding proteins: |
|
|
- Hepcidin/HAMP
- Hemojuvelin
- Iron-responsive element-binding protein
- Ceruloplasmin
- HFE
- Hemosiderin
- Lactoferrin
|
|
|
|
Copper metabolism |
- ATP7A
- ATP7B
- Ceruloplasmin
- SLC31A1
- ATOX1
|
|
Zinc metabolism |
- TMC6
- TMC8
- SLC30A1
- SLC39A4
|
|
|
Electrolyte |
Sodium metabolism |
|
|
Phosphate metabolism |
- Phosphoric acids and phosphates
|
|
Magnesium metabolism |
|
|
Calcium metabolism |
- Calcium-sensing receptor
- Calcium-binding protein
|
|
|
Index of nutrition
|
|
Description |
- Vitamins
- Cofactors
- Metal metabolism
- Fats
- metabolism
- intermediates
- lipoproteins
- Sugars
- Glycolysis
- Glycogenesis and glycogenolysis
- Fructose and galactose
|
|
Disease |
- Vitamins
- Carbohydrate
- Lipid
- Metals
- Other
- Symptoms and signs
|
|
Treatment |
- Drugs
- Vitamins
- Mineral supplements
|
|
|