Not to be confused with Cardiac arrest.
Cardiac stress test |
Intervention |
A male patient walks on a stress test treadmill to have his heart's function checked
|
ICD-9-CM |
89.4 |
MeSH |
D025401 |
MedlinePlus |
003878 |
Cardiac stress test (or Cardiac diagnostic test) is a test used in medicine and cardiology to measure the heart's ability to respond to external stress in a controlled clinical environment.
The stress response is induced by exercise or drug stimulation. Cardiac stress tests compare the coronary circulation while the patient is at rest with the same patient's circulation observed during maximum physical exertion, showing any abnormal blood flow to the heart's muscle tissue (the myocardium). The results can be interpreted as a reflection on the general physical condition of the test patient. This test can be used to diagnose ischemic heart disease, and for patient prognosis after a heart attack (myocardial infarction).
The cardiac stress test is done with heart stimulation, either by exercise on a treadmill, pedalling a stationary exercise bicycle ergometer[1] or with intravenous pharmacological stimulation, with the patient connected to an electrocardiogram (or ECG). People who cannot use their legs may exercise with a bicycle-like crank that they turn with their arms.[2]
The level of mechanical stress is progressively increased by adjusting the difficulty (steepness of the slope) and speed. The test administrator or attending physician examines the symptoms and blood pressure response. With use of ECG, the test is most commonly called a cardiac stress test, but is known by other names, such as exercise testing, stress testing treadmills, exercise tolerance test, stress test or stress test ECG.
Contents
- 1 Stress echocardiography
- 2 Nuclear stress test
- 3 Function
- 4 Diagnostic value
- 5 Contraindications
- 6 Adverse effects
- 7 Pharmacological agents
- 8 Limitations
- 9 Results
- 10 See also
- 11 References
- 12 External links
Stress echocardiography
A stress test may be accompanied by echocardiography.[3] The echocardiography is performed both before and after the exercise so that structural differences can be compared.
Nuclear stress test
The best known example is myocardial perfusion imaging. Typically, a radiotracer (Tc-99 sestamibi, Myoview or Thallous Chloride 201) may be injected during the test. After a suitable waiting period to ensure proper distribution of the radiotracer, scans are acquired with a gamma camera to capture images of the blood flow. Scans acquired before and after exercise are examined to assess the state of the coronary arteries of the patient.
Showing the relative amounts of radioisotope within the heart muscle, the nuclear stress tests more accurately identify regional areas of reduced blood flow.
Stress and potential cardiac damage from exercise during the test is a problem in patients with ECG abnormalities at rest or in patients with severe motor disability. Pharmacological stimulation from vasodilators such as dipyridamole or adenosine, or positive chronotropic agents such as dobutamine can be used. Testing personnel can include a cardiac radiologist, a nuclear medicine physician,a nuclear medicine technologist, a cardiology technologist, a cardiologist, and/or a nurse.
Function
Stress-ECG of a patient with coronary heart disease: ST-segment depression (arrow) at 100 watts of exercise. A: at rest, B: at 75 watts, C: at 100 watts, D: at 125 watts.
The American Heart Association recommends ECG treadmill testing as the first choice for patients with medium risk of coronary heart disease according to risk factors of smoking, family history of coronary artery stenosis, hypertension, diabetes and high cholesterol.
- Perfusion stress test (with 99mTc labelled sestamibi) is appropriate for select patients, especially those with an abnormal resting electrocardiogram.
- Intracoronary ultrasound or angiogram can provide more information at the risk of complications associated with cardiac catheterization.
Diagnostic value
The common approach for stress testing by American College of Cardiology and American Heart Association indicates the following:[4]
- Treadmill test: sensitivity 73-90%, specificity 50-74% (Modified Bruce Protocol)
- Nuclear test: sensitivity 81%, specificity 85-95%
(Sensitivity is the percentage of sick people who are correctly identified as having the condition. Specificity indicates the percentage of healthy people who are correctly identified as not having the condition.)
The value of stress tests has always been recognized as limited in assessing heart disease such as atherosclerosis, a condition which mainly produces wall thickening and enlargement of the arteries. This is because the stress test compares the patient's coronary flow status before and after exercise and is suitable to detecting specific areas of ischemia and lumen narrowing, not a generalized arterial thickening.
According to American Heart Association data,[citation needed] about 65% of men and 47% of women have as their first symptom of cardiovascular disease a heart attack or sudden cardiac arrest. Stress tests, carried out shortly before these events, are not relevant to the prediction of infarction in the majority of individuals tested.[dubious – discuss] Over the past two decades, better methods[citation needed] have been developed to identify atherosclerotic disease before it becomes symptomatic.
These detection methods have included either anatomical or physiological.
- Examples of anatomical methods include
- CT coronary calcium score
- Intima-media thickness (IMT)
- Intravascular ultrasound (IVUS)
- Examples of physiological methods include
- Lipoprotein analysis
- HbA1c
- Hs-CRP
- Homocysteine
The anatomic methods directly measure some aspects of the actual process of atherosclerosis itself and therefore offer the possibility of early diagnosis, but are often more expensive and may be invasive (in the case of IVUS, for example). The physiological methods are often less expensive and more secure, but are not able to quantify the current status of the disease or directly track progression.[citation needed]
Contraindications
Stress cardiac imaging is not recommended for asymptomatic, low-risk patients as part of their routine care.[5] Some estimates show that such screening accounts for 45% of cardiac stress imaging, and evidence does not show that this results in better outcomes for patients.[5] Unless high-risk markers are present, such as diabetes in patients aged over 40, peripheral arterial disease; or a risk of coronary heart disease greater than 2 percent yearly, most health societies do not recommend the test as a routine procedure.[5][6][7][8]
Absolute contraindications to cardiac stress test include:
- Acute myocardial infarction within 48 hours
- Unstable angina not yet stabilized with medical therapy
- Uncontrolled cardiac arrhythmia, which may have significant hemodynamic responses (e.g. ventricular tachycardia)
- Severe symptomatic aortic stenosis, aortic dissection, pulmonary embolism, and pericarditis
- Multivessel coronary artery diseases that have a high risk of producing an acute myocardial infarction
- Decompensated or inadequately controlled congestive heart failure[9]
- Uncontrolled hypertension (blood pressure>200/110mm Hg)[9]
- Severe pulmonary hypertension[9]
- Acute aortic dissection[9]
- Acutely ill for any reason[9]
Adverse effects
Side effects from cardiac stress testing may include
- Palpitations, chest pain, myocardial infarction, shortness of breath, headache, nausea or fatigue.
- Adenosine and dipyridamole can cause mild hypotension.
- As the tracers used for this test are carcinogenic, frequent use of these tests carries a small risk of cancer.
Pharmacological agents
The choice of pharmacologic stress agents used in the test depends on factors such as potential drug interactions with other treatments and concomitant diseases.
Pharmacologic agents such as Adenosine, Lexiscan (Regadenoson), or dipyridamole is generally used when a patient cannot achieve adequate work level with treadmill exercise, or has poorly controlled hypertension or left bundle branch block. However, an exercise stress test may provide more information about exercise tolerance than a pharmacologic stress test.[10]
Commonly used agents include:
- Vasodilators acting as adenosine receptor agonists, such as Adenosine itself, and Dipyridamole (brand name "Persantine"),[11] which acts indirectly at the receptor.
- Regadenoson (brand name "Lexiscan"), which acts specifically at the Adenosine A2A receptor, thus affecting the heart more than the lung.
- Dobutamine. The effects of beta-agonists such as dobutamine can be reversed by administering beta-blockers such as propranolol.
Lexiscan (Regadenoson) or Dobutamine is often used in patients with severe reactive airway disease (Asthma or COPD) as adenosine and dipyridamole can cause acute exacerbation of these conditions. If the patient's Asthma is treated with an inhaler then it should be used as a pre-treatment prior to the injection of the pharmacologic stress agent. In addition, if the patient is actively wheezing then the physician should determine the benefits versus the risk to the patient of performing a stress test especially outside of a hospital setting. Caffeine is usually held 24 hours prior to an adenosine stress test, as it is a competitive antagonist of the A2A adenosine receptor and can attenuate the vasodilatory effects of adenosine.
Aminophylline may be used to attenuate severe and/or persistent adverse reactions to Adenosine and Lexiscan.
Limitations
The stress test does not detect:
- Atheroma
- Vulnerable plaques
The test has relatively high rates of false positives and false negatives compared with other clinical tests.
Results
Once the stress test is completed, the patient generally is advised to not suddenly stop activity, but to slowly decrease the intensity of the exercise over the course of several minutes.
- Increased spatial resolution allows a more sensitive detection of ischemia.
- Stress testing, even if made in time, is not able to guarantee the prevention of symptoms, fainting, or death. Stress testing, although more effective than a resting ECG at detecting heart function, is only able to detect certain cardiac properties.
- The detection of high-grade coronary artery stenosis by a cardiac stress test has been the key to recognizing people who have heart attacks since 1980. From 1960 to 1990, despite the success of stress testing to identify many who were at high risk of heart attack, the inability of this test to correctly identify many others is discussed in medical circles but unexplained.
- High degrees of coronary artery stenosis, which are detected by stress testing methods are often, though not always, responsible for recurrent symptoms of angina.
- Unstable atheroma produces "vulnerable plaques" hidden within the walls of coronary arteries which go undetected by this test.
- Limitation in blood flow to the left ventricle can lead to recurrent angina pectoris.
See also
- Cardiac
- Cardiac arrest
- Harvard Step Test
- Metabolic equivalent
- Robert A. Bruce
References
- ^ "Exercise stress test". MedlinePlus : U.S. National Library of Medicine. Retrieved 31 May 2013.
- ^ Terry, Sarah (August 16, 2013). "Treadmill Test for Heart Problems". Livestrong Foundation. Retrieved May 30, 2014.
- ^ Rimmerman, Curtis (2009-05-05). The Cleveland Clinic Guide to Heart Attacks. Kaplan Publishing. pp. 113–. ISBN 978-1-4277-9968-5. Retrieved 25 September 2011.
- ^ Gibbons, R., Balady, G.; Timothybricker, J., Chaitman, B., Fletcher, G., Froelicher, V., Mark, D., McCallister, B. et al. (2002). "ACC / AHA 2002 guideline update for exercise testing: summary article A report of the American College of Cardiology / American Heart Association Task Force on Practice Guidelines,Journal of the American College of Cardiology
- ^ a b c American College of Cardiology, "Five Things Physicians and Patients Should Question", Choosing Wisely: an initiative of the ABIM Foundation (American College of Cardiology), retrieved August 17, 2012
- ^ Taylor, A. J.; Cerqueira, M.; Hodgson, J. M. .; Mark, D.; Min, J.; O'Gara, P.; Rubin, G. D.; American College of Cardiology Foundation Appropriate Use Criteria Task Force; Society of Cardiovascular Computed Tomography; American College Of, R.; American Heart, A.; American Society of Echocardiography; American Society of Nuclear Cardiology; North American Society for Cardiovascular Imaging; Society for Cardiovascular Angiography Interventions; Society for Cardiovascular Magnetic Resonance; Kramer, C. M.; Berman; Brown; Chaudhry, F. A.; Cury, R. C.; Desai, M. Y.; Einstein, A. J.; Gomes, A. S.; Harrington, R.; Hoffmann, U.; Khare, R.; Lesser; McGann; Rosenberg, A. (2010). "ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography". Journal of the American College of Cardiology 56 (22): 1864–1894. doi:10.1016/j.jacc.2010.07.005. PMID 21087721. edit
- ^ Douglas, P. S.; Garcia, M. J.; Haines, D. E.; Lai, W. W.; Manning, W. J.; Patel, A. R.; Picard, M. H.; Polk, D. M.; Ragosta, M.; Ward, R. P.; Douglas, R. B.; Weiner, R. B.; Society for Cardiovascular Angiography Interventions; Society of Critical Care Medicine; American Society of Echocardiography; American Society of Nuclear Cardiology; Heart Failure Society of America; Society for Cardiovascular Magnetic Resonance; Society of Cardiovascular Computed Tomography; American Heart Association; Heart Rhythm Society (2011). "ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography". Journal of the American College of Cardiology 57 (9): 1126–1166. doi:10.1016/j.jacc.2010.11.002. PMID 21349406. edit
- ^ Hendel, R. C.; Abbott, B. G.; Bateman, T. M.; Blankstein, R.; Calnon, D. A.; Leppo, J. A.; Maddahi, J.; Schumaecker, M. M.; Shaw, L. J.; Ward, R. P.; Wolinsky, D. G.; American Society of Nuclear Cardiology (2010). "The role of radionuclide myocardial perfusion imaging for asymptomatic individuals". Journal of Nuclear Cardiology 18 (1): 3–15. doi:10.1007/s12350-010-9320-5. PMID 21181519. edit
- ^ a b c d e Henzlova, Milena; Cerqueira, Hansen, Taillefer, Yao (January 2009). "Stress Protocols and Tracers". Journal of Nuclear Cardiology. doi:10.1007/s12350-009-9062-4.
- ^ Weissman, Neil J.; Adelmann, Gabriel A. (2004). Cardiac imaging secrets. Elsevier Health Sciences. pp. 126–. ISBN 978-1-56053-515-7. Retrieved 25 September 2011.
- ^ Nicholls, Stephen J.; Worthley, Stephen (January 2011). Cardiovascular Imaging for Clinical Practice. Jones & Bartlett Learning. pp. 198–. ISBN 978-0-7637-5622-2. Retrieved 25 September 2011.
External links
- Exercise stress test information at NIH MedLine
- Preparing for the exercise stress test
- "A Simple Exercise Tolerance Test for Circulatory Efficiency with Standard Tables for Normal Individuals," American Journal of Medical Sciences
- "Optimal Medical Therapy with or without PCI for Stable Coronary Disease," New England Journal of Medicine
- Stress test information from the American Heart Association
- Nuclear stress test information at NIH MedLine
- Stress test FAQs
Healthcare science – Medicine / Surgery / Cardiac procedures (ICD-9-CM V3 35–37+89.4+99.6, ICD-10-PCS 02)
|
|
Surgery and IC |
Heart valves
and septa
|
- Valve repair
- Valvulotomy
- Mitral valve repair
- Valvuloplasty
- Valve replacement
- Aortic valve replacement
- Ross procedure
- Percutaneous aortic valve replacement
- Mitral valve replacement
- production of septal defect in heart
- enlargement of existing septal defect
- Atrial septostomy
- Balloon septostomy
- creation of septal defect in heart
- Blalock–Hanlon procedure
- shunt from heart chamber to blood vessel
- atrium to pulmonary artery
- Fontan procedure
- left ventricle to aorta
- Rastelli procedure
- right ventricle to pulmonary artery
- Sano shunt
- compound procedures
- for transposition of great vessels
- Jatene procedure
- Mustard procedure
- for univentricular defect
- Norwood procedure
- Kawashima procedure
- shunt from blood vessel to blood vessel
- systemic circulation to pulmonary artery shunt
- Blalock–Taussig shunt
- SVC to the right PA
- Glenn procedure
|
|
Cardiac vessels
|
- CHD
- Angioplasty
- Bypass/Coronary artery bypass
- MIDCAB
- Off-pump CAB
- TECAB
- Coronary stent
- Bare-metal stent
- Drug-eluting stent
- Bentall procedure
- Valve-sparing aortic root replacement
|
|
Other
|
- Pericardium
- Pericardiocentesis
- Pericardial window
- Pericardiectomy
- Myocardium
- Cardiomyoplasty
- Dor procedure
- Septal myectomy
- Ventricular reduction
- Alcohol septal ablation
- Conduction system
- Maze procedure
- Cox maze and minimaze
- Catheter ablation
- Cryoablation
- Radiofrequency ablation
- Pacemaker insertion
- Left atrial appendage occlusion
- Cardiotomy
- Heart transplantation
|
|
|
Diagnostic
tests and
procedures |
- Electrophysiology
- Electrocardiography
- Vectorcardiography
- Holter monitor
- Implantable loop recorder
- Cardiac stress test
- Bruce protocol
- Electrophysiology study
- Cardiac imaging
- Angiocardiography
- Echocardiography
- TTE
- TEE
- Myocardial perfusion imaging
- Cardiovascular MRI
- Ventriculography
- Radionuclide ventriculography
- Cardiac catheterization/Coronary catheterization
- Cardiac CT
- Cardiac PET
- sound
- Phonocardiogram
|
|
Function tests |
- Impedance cardiography
- Ballistocardiography
- Cardiotocography
|
|
Pacing |
- Cardioversion
- Transcutaneous pacing
|
|
|
|
noco/cong/tumr, sysi/epon, injr
|
proc, drug (C1A/1B/1C/1D), blte
|
|
|
|