出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/08/13 16:42:48」(JST)
Enantiomeric excess (ee) is a measurement of purity used for chiral substances. It reflects the degree to which a sample contains one enantiomer in greater amounts than the other. A racemic mixture has an ee of 0%, while a single completely pure enantiomer has an ee of 100%. A sample with 70% of one enantiomer and 30% of the other has an ee of 40%.
Enantiomeric excess is defined as the absolute difference between the mole fraction of each enantiomer:[1]
where
In practice, it is most often expressed as a percent enantiomeric excess.
The enantiomeric excess can be determined in another way if we know the amount of each enantiomer produced. If one knows the moles of each enantiomer produced then:
and are the respective fractions of enantiomers in a mixture such that
Enantiomeric excess is used as one of the indicators of the success of an asymmetric synthesis. For mixtures of diastereomers, there are analogous definitions and uses for diastereomeric excess and percent diastereomeric excess.
As an example, a sample with 70% of R isomer and 30% of S will have an enantiomeric excess of 40%. This can also be thought of as a mixture of 40% pure R with 60% of a racemic mixture (which contributes 30% R and 30% S to the overall composition).
If given the enantiomeric excess of a mixture, the fraction of the major isomer, say , can be determined using and the minor isomer .
A non-racemic mixture of two enantiomers will have a net optical rotation. It is possible to determine the specific rotation of the mixture and, with knowledge of the specific rotation of the pure enantiomer, the optical purity can be determined.[2]
Ideally, the contribution of each component of the mixture to the total optical rotation is directly proportional to its mole fraction, and as a result the numerical value of the optical purity is identical to the enantiomeric excess. This has led to informal use the two terms as interchangeable, especially because optical purity was the traditional way of measuring enantiomeric excess. However, other methods such as chiral column chromatography and NMR spectroscopy can now be used for measuring the amount of each enantiomer individually.
The ideal equivalence between enantiomeric excess and optical purity does not always hold. For example,
The term enantiomeric excess was introduced in 1971 by Morrison and Mosher in their publication Asymmetric Organic Reactions.[5] The use of enantiomeric excess has established itself because of its historic ties with optical rotation. It has been suggested that the concept of ee should be replaced by that of er which stands for enantiomeric ratio or er (S:R) [6] or q (S/R) because determination of optical purity has been replaced by other techniques which directly measure R and S and because it simplifies mathematical treatments such as the calculation of equilibrium constants and relative reaction rates. The same arguments are valid for changing diastereomeric excess (de) to diastereomeric ratio (dr).
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「不斉収率」「鏡像体過剰率」 |
関連記事 | 「excess」「enantiomeric」「enantiomer」 |
.