出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2013/01/30 20:55:19」(JST)
The phrase "Warburg effect" is used for two unrelated observations in biochemistry, one in plant physiology and the other in oncology, both due to Nobel laureate Otto Heinrich Warburg.
Contents
|
In plant physiology, the Warburg effect is the inhibition of carbon dioxide fixation, and subsequently of photosynthesis, by high oxygen concentrations. The oxygenase activity of RuBisCO, which initiates the process of photorespiration, largely accounts for this effect.
In oncology, the Warburg effect is the observation that most cancer cells predominantly produce energy by a high rate of glycolysis followed by lactic acid fermentation in the cytosol, rather than by a comparatively low rate of glycolysis followed by oxidation of pyruvate in mitochondria as in most normal cells.[1][2] The latter process is aerobic (uses oxygen). Malignant, rapidly growing tumor cells typically have glycolytic rates up to 200 times higher than those of their normal tissues of origin; this occurs even if oxygen is plentiful.
Otto Warburg postulated this change in metabolism is the fundamental cause of cancer,[3] a claim now known as the Warburg hypothesis. Today, mutations in oncogenes and tumor suppressor genes are known to be responsible for malignant transformation.[4][5]
The Warburg effect has important medical applications, as high aerobic glycolysis by malignant tumors is used clinically to diagnose and monitor treatment responses of cancers by imaging uptake of 2-18F-2-deoxyglucose (FDG) (a radioactive modified hexokinase substrate) with positron emission tomography (PET).[6][7]
The Warburg effect may simply be a consequence of damage to the mitochondria in cancer, or an adaptation to low-oxygen environments within tumors, or a result of cancer genes shutting down the mitochondria because they are involved in the cell's apoptosis program which would otherwise kill cancerous cells. It may also be an effect associated with cell proliferation. Since glycolysis provides most of the building blocks required for cell proliferation, cancer cells (and normal proliferating cells) have been proposed to need to activate glycolysis, despite the presence of oxygen, to proliferate .[8] Evidence attributes some of the high aerobic glycolytic rates to an overexpressed form of mitochondrially bound hexokinase[9] responsible for driving the high glycolytic activity.
In March 2008, Lewis C. Cantley and colleagues at the Harvard Medical School announced they had identified the enzyme that gave rise to the Warburg effect.[10][11] The researchers stated tumor M2-PK, a form of the pyruvate kinase enzyme, is produced in all rapidly dividing cells, and is responsible for enabling cancer cells to consume glucose at an accelerated rate; on forcing the cells to switch to pyruvate kinase's alternative form by inhibiting the production of tumor M2-PK, their growth was curbed. The researchers acknowledged the fact that the exact chemistry of glucose metabolism was likely to vary across different forms of cancer; but PKM2 was identified in all of the cancer cells they had tested. This enzyme form is not usually found in healthy tissue, though it is apparently necessary when cells need to multiply quickly, e.g. in healing wounds or hematopoiesis.
Many substances have been developed which inhibit glycolysis, and such inhibitors are currently the subject of intense research as anticancer agents,[12] including SB-204990, 2-deoxy-D-glucose (2DG), 3-bromopyruvate (3-BrPA, bromopyruvic acid, or bromopyruvate), 3-BrOP, 5-thioglucose and dichloroacetic acid (DCA). Clinical trials are ongoing for 2-DG and DCA.[13]
DCA, a small-molecule inhibitor of mitochondrial pyruvate dehydrogenase kinase, "downregulates" glycolysis in vitro and in vivo. Researchers at the University of Alberta theorized in 2007 that DCA might have therapeutic benefits against many types of cancers.[14][15]
A model called the reverse Warburg effect describes cells producing energy by glycolysis, but were not tumor cells, but stromal fibroblasts. Although the Warburg effect would exist in certain cancer types potentially, it highlighted the need for a closer look at tumor metabolism.[16][17]
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「Warburg効果」「ワールブルク効果」 |
関連記事 | 「effect」「Warburg」「effected」 |
.