Schematic picture of
DNA polymerase III* (with subunits).
- Pol III can also refer to HNoMS Pol III, a Norwegian guard vessel from WWII
DNA polymerase III holoenzyme is the primary enzyme complex involved in prokaryotic DNA replication. It was discovered by Thomas Kornberg (son of Arthur Kornberg) and Malcolm Gefter in 1970. The complex has high processivity (i.e. the number of nucleotides added per binding event) and, specifically referring to the replication of the E.coli genome, works in conjunction with four other DNA polymerases (Pol I, Pol II, Pol IV, and Pol V). Being the primary holoenzyme involved in replication activity, the DNA Pol III holoenzyme also has proofreading capabilities that correct replication mistakes by means of exonuclease activity working 3'→5'. DNA Pol III is a component of the replisome, which is located at the replication fork.
Contents
- 1 Components
- 2 Activity
- 2.1 Addition onto 3'OH
- 2.2 Synthesis of DNA
- 2.3 Removal of primer
- 3 See also
- 4 References
- 5 External links
Components
The replisome is composed of the following:
- 2 DNA Pol III enzymes, each comprising α, ε and θ subunits. (It has been proven that there is a third copy of Pol III at the replisome.[1])
- the α subunit (encoded by the dnaE gene) has the polymerase activity.
- the ε subunit (dnaQ) has 3'→5' exonuclease activity.
- the θ subunit (holE) stimulates the ε subunit's proofreading.
- 2 β units (dnaN) which act as sliding DNA clamps, they keep the polymerase bound to the DNA.
- 2 τ units (dnaX) which acts to dimerize two of the core enzymes (α, ε, and θ subunits).
- 1 γ unit (also dnaX) which acts as a clamp loader for the lagging strand Okazaki fragments, helping the two β subunits to form a unit and bind to DNA. The γ unit is made up of 5 γ subunits which include 3 γ subunits, 1 δ subunit (holA), and 1 δ' subunit (holB). The δ is involved in copying of the lagging strand.
- Χ (holC) and Ψ (holD) which form a 1:1 complex and bind to γ or τ.[2]
Activity
DNA polymerase III synthesizes base pairs at a rate of around 1000 nucleotides per second.[3] DNA Pol III activity begins after strand separation at the origin of replication. Because DNA synthesis cannot start de novo, an RNA primer, complementary to part of the single-stranded DNA, is synthesized by primase (an RNA polymerase):
("!" for RNA, '"$" for DNA, "*" for polymerase)
-------->
* * * *
! ! ! ! _ _ _ _
_ _ _ _ | RNA | <--ribose (sugar)-phosphate backbone
G U A U | Pol | <--RNA primer
* * * * |_ _ _ _| <--hydrogen bonding
C A T A G C A T C C <--template ssDNA (single-stranded DNA)
_ _ _ _ _ _ _ _ _ _ <--deoxyribose (sugar)-phosphate backbone
$ $ $ $ $ $ $ $ $ $
Addition onto 3'OH
As replication progresses and the replisome moves forward, DNA polymerase III arrives at the RNA primer and begins replicating the DNA, adding onto the 3'OH of the primer:
* * * *
! ! ! ! _ _ _ _
_ _ _ _ | DNA | <--ribose (sugar)-phosphate backbone
G U A U | Pol | <--RNA primer
* * * * |_III_ _| <--hydrogen bonding
C A T A G C A T C C <--template ssDNA (single-stranded DNA)
_ _ _ _ _ _ _ _ _ _ <--deoxyribose (sugar)-phosphate backbone
$ $ $ $ $ $ $ $ $ $
Synthesis of DNA
DNA polymerase III will then synthesize a continuous or discontinuous strand of DNA, depending if this is occurring on the leading or lagging strand (Okazaki fragment) of the DNA. DNA polymerase III has a high processivity and therefore, synthesizes DNA very quickly. This high processivity is due in part to the β-clamps that "hold" onto the DNA strands.
----------->
* * * *
! ! ! ! $ $ $ $ $ $ _ _ _ _
_ _ _ _ _ _ _ _ _ _| DNA | <--deoxyribose (sugar)-phosphate backbone
G U A U C G T A G G| Pol | <--RNA primer
* * * * * * * * * *|_III_ _| <--hydrogen bonding
C A T A G C A T C C <--template ssDNA (single-stranded DNA)
_ _ _ _ _ _ _ _ _ _ <--deoxyribose (sugar)-phosphate backbone
$ $ $ $ $ $ $ $ $ $
Removal of primer
After replication of the desired region, the RNA primer is removed by DNA polymerase I via the process of nick translation. The removal of the RNA primer allows DNA ligase to ligate the DNA-DNA nick between the new fragment and the previous strand. DNA polymerase I & III, along with many other enzymes are all required for the high fidelity, high-processivity of DNA replication.
See also
- DNA replication
- DNA polymerase
- Beta clamp
- Clamping down on pathogenic bacteria – how to shut down a key DNA polymerase complex
References
- ^ Reyes-Lamothe R, Sherratt D, Leake M (2010). "Stoichiometry and Architecture of Active DNA Replication Machinery in Escherichia Coli". Science 328: 498 – 501. doi:10.1126/science.1185757. PMID 20413500.
- ^ Olson MW, Dallmann HG, McHenry CS (December 1995). "DnaX complex of Escherichia coli DNA polymerase III holoenzyme. The chi psi complex functions by increasing the affinity of tau and gamma for delta.delta' to a physiologically relevant range". J. Biol. Chem. 270 (49): 29570–7. doi:10.1074/jbc.270.49.29570. PMID 7494000.
- ^ Kelman Z, O'Donnell M (1995). "DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine". Annu. Rev. Biochem. 64: 171–200. doi:10.1146/annurev.bi.64.070195.001131. PMID 7574479.
External links
- Overview at Oregon State University
- DNA Polymerase III at the US National Library of Medicine Medical Subject Headings (MeSH)
Transferases: phosphorus-containing groups (EC 2.7)
|
|
2.7.1-2.7.4:
phosphotransferase/kinase
(PO4) |
2.7.1: OH acceptor |
- Hexo-
- Gluco-
- Fructo-
- Galacto-
- Phosphofructo-
- 1
- Liver
- Muscle
- Platelet
- 2
- Riboflavin
- Shikimate
- Thymidine
- NAD+
- Glycerol
- Pantothenate
- Mevalonate
- Pyruvate
- Deoxycytidine
- PFP
- Diacylglycerol
- Phosphoinositide 3
- Class I PI 3
- Class II PI 3
- Sphingosine
- Glucose-1,6-bisphosphate synthase
|
|
2.7.2: COOH acceptor |
- Phosphoglycerate
- Aspartate
|
|
2.7.3: N acceptor |
|
|
2.7.4: PO4 acceptor |
- Phosphomevalonate
- Adenylate
- Nucleoside-diphosphate
- Uridylate
- Guanylate
- Thiamine-diphosphate
|
|
|
2.7.6: diphosphotransferase
(P2O7) |
- Ribose-phosphate diphosphokinase
- Thiamine diphosphokinase
|
|
2.7.7: nucleotidyltransferase
(PO4-nucleoside) |
Polymerase |
DNA polymerase |
- DNA-directed DNA polymerase
- I
- II
- III
- IV
- V
- RNA-directed DNA polymerase
- Reverse transcriptase
- Telomerase
- DNA nucleotidylexotransferase/Terminal deoxynucleotidyl transferase
|
|
RNA nucleotidyltransferase |
- RNA polymerase/DNA-directed RNA polymerase
- RNA polymerase I
- RNA polymerase II
- RNA polymerase III
- RNA polymerase IV
- Primase
- RNA-dependent RNA polymerase
- PNPase
|
|
|
Phosphorolytic
3' to 5' exoribonuclease |
|
|
Uridylyltransferase |
- Glucose-1-phosphate uridylyltransferase
- Galactose-1-phosphate uridylyltransferase
|
|
Guanylyltransferase |
|
|
Other |
- Recombinase (Integrase)
- Transposase
|
|
|
2.7.8: miscellaneous |
Phosphatidyltransferases |
- CDP-diacylglycerol—glycerol-3-phosphate 3-phosphatidyltransferase
- CDP-diacylglycerol—serine O-phosphatidyltransferase
- CDP-diacylglycerol—inositol 3-phosphatidyltransferase
- CDP-diacylglycerol—choline O-phosphatidyltransferase
|
|
Glycosyl-1-phosphotransferase |
- N-acetylglucosamine-1-phosphate transferase
|
|
|
2.7.10-2.7.13: protein kinase
(PO4; protein acceptor) |
2.7.10: protein-tyrosine |
|
|
2.7.11: protein-serine/threonine |
- see serine/threonine-specific protein kinases
|
|
2.7.12: protein-dual-specificity |
- see serine/threonine-specific protein kinases
|
|
2.7.13: protein-histidine |
- Protein-histidine pros-kinase
- Protein-histidine tele-kinase
- Histidine kinase
|
|
|
- Biochemistry overview
- Enzymes overview
- By EC (Enzyme Commission number): 1.1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 10
- 11
- 13
- 14
- 15-18
- 2.1
- 3.1
- 4.1
- 5.1
- 6.1-3
|
|
|
|
DNA replication (comparing Prokaryotic to Eukaryotic)
|
|
Initiation |
Prokaryotic
(initiation) |
|
|
Eukaryotic
(preparation in
G1 phase) |
- Origin recognition complex
- ORC1
- ORC2
- ORC3
- ORC4
- ORC5
- ORC6
- Minichromosome maintenance
- MCM2
- MCM3
- MCM4
- MCM5
- MCM6
- MCM7
- Autonomously replicating sequence
- Single-strand binding protein
|
|
Both |
- Origin of replication/Ori/Replicon
- Replication fork
- Lagging and leading strands
- Okazaki fragments
- Primer
|
|
|
Replication |
Prokaryotic
(elongation) |
- DNA polymerase III holoenzyme
- dnaC
- dnaE
- dnaH
- dnaN
- dnaQ
- dnaT
- dnaX
- holA
- holB
- holC
- holD
- holE
- Replisome
- DNA ligase
- DNA clamp
- Topoisomerase
- Prokaryotic DNA polymerase: DNA polymerase I
|
|
Eukaryotic
(synthesis in
S phase) |
- Replication factor C
- Flap endonuclease
- Topoisomerase
- Replication protein A
- Eukaryotic DNA polymerase:
- alpha
- delta
- epsilon
|
|
Both |
- Movement: Processivity
- DNA ligase
|
|
|
Termination |
|
|
Index of genetics
|
|
Description |
- Gene expression
- DNA
- replication
- cycle
- recombination
- repair
- binding proteins
- Transcription
- factors
- regulators
- nucleic acids
- RNA
- RNA binding proteins
- ribonucleoproteins
- repeated sequence
- modification
- Translation
- ribosome
- modification
- nexins
- Proteins
- domains
- Structure
- primary
- secondary
- tertiary
- quaternary
|
|
Disease |
- Replication and repair
- Transcription factor
- Transcription
- Translation
|
|
|