Campylobacter jejuni |
|
Scanning electron micrograph of C. jejuni demonstrating the chracteristic curved rod shape of the organism |
Scientific classification |
Kingdom: |
Bacteria |
Phylum: |
Proteobacteria |
Class: |
Epsilon Proteobacteria |
Order: |
Campylobacterales |
Family: |
Campylobacteraceae |
Genus: |
Campylobacter |
Species: |
C. jejuni |
Binomial name |
Campylobacter jejuni
(Jones et al. 1931)
Veron & Chatelain 1973 |
Blood-free, charcoal-based selective medium agar (CSM) for isolation of
Campylobacter jejuni
Campylobacter jejuni is a species of bacteria commonly found in animal feces. It is curved, helical-shaped, non-spore forming, Gram-negative, and microaerophilic.[1][2][3] C. jejuni is one of the most common causes of human gastroenteritis in the world. Food poisoning caused by Campylobacter species can be severely debilitating, but is rarely life-threatening. It has been linked with subsequent development of Guillain-Barré syndrome (GBS), which usually develops two to three weeks after the initial illness.[4]
Contents
- 1 Sources
- 2 Disease
- 3 Laboratory characteristics
- 4 See also
- 5 References
- 6 External links
Sources
C. jejuni is commonly associated with poultry, and it naturally colonises the digestive tract of many bird species. One study found that 30% of European starlings in farm settings in Oxfordshire, United Kingdom, were carriers of C. jejuni.[5] It is also common in cattle, and although it is normally a harmless commensal of the gastrointestinal tract in these animals, it can cause campylobacteriosis in calves. It has also been isolated from wombat and kangaroo feces, being a cause of bushwalkers' diarrhea. Contaminated drinking water and unpasteurized milk provide an efficient means for distribution. Contaminated food is a major source of isolated infections, with incorrectly prepared meat and poultry as the primary source of the bacteria.
On June 29, 2011, the Wyoming Department of Health was notified of two laboratory-confirmed cases of C. jejuni in two persons working at a local sheep ranch who had castrated and docked the tails of lambs. Fecal-oral contamination was later verified by the CDC, which confirmed the bacteria from the infected lambs at the ranch had PFGE patterns indistinguishable from those from the men.[6]
Disease
Infection with C. jejuni usually results in enteritis, which is characterised by abdominal pain, diarrhea, fever, and malaise. The symptoms usually persist for between 24 hours and a week, but may be longer. Diarrhea can vary in severity from loose stools to bloody stools. The disease is usually self-limiting. However, it does respond to antibiotics. Severe (accompanying fevers, blood in stools) or prolonged cases may require ciprofloxacin, erythromycin, azithromycin or norfloxacin. The drug of choice is usually erythromycin. About 90% of cases respond to ciprofloxacin treatment. Fluid and electrolyte replacement may be required for serious cases.
The first full-genome sequence of C. jejuni was performed in 2000 (strain NCTC11168 with a circular chromosome of 1,641,481 base pairs).[7]
Laboratory characteristics
Characteristic |
Result |
Growth at 25 °C |
- |
Growth at 35-37 °C |
+ |
Growth at 42 °C |
+ |
Nitrate reduction |
+ |
Catalase test |
+ |
Oxidase test |
+ |
Growth on MacConkey agar |
+ |
Motility (wet mount) |
+ |
Glucose utilization |
- |
Hippurate hydrolysis |
+ |
Resistance to nalidixic acid |
- |
Resistance to cephalothin |
+ |
Scanning electron micrograph depicting a number of
Campylobacter jejuni bacteria
Campylobacter is grown on specially selective "CAMP" agar plates at 42°C, the normal avian body temperature, rather than at 37°C, the temperature at which most other pathogenic bacteria are grown. Since the colonies are oxidase positive, they will usually only grow in scanty amounts on the plates. Microaerophilic conditions are required for luxurious growth. A selective blood agar medium (Skirrow's medium) can be used. Greater selectivity can be gained with an infusion of a cocktail of antibiotics: vancomycin, polymixin-B, trimethoprim and actidione, (Preston's agar),ref jcp.bmj.com/content/35/4/462.full.pdf> and growth under microaerophilic conditions at 42°C.
See also
References
- ^ Ryan KJ, Ray CG (editors) (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill. ISBN 0-8385-8529-9.
- ^ Online Bacteriological Analytical Manual, Chapter 7: Campylobacter
- ^ Gorbach, Sherwood L., Falagas, Matthew (editors) (2001). The 5 minute infectious diseases consult (1st ed.). Lippincott Williams & Wilkins. ISBN 0-683-30736-3. "Multiple Campylobacter Genomes Sequenced". 2005-01-04. Retrieved 2007-07-27.
- ^ Fujimoto S, Amako K. Guillain-Barre syndrome and Campylobacter jejuni infection. Lancet 1990;35:1350.
- ^ F M Colles, N D McCarthy, J C Howe, C L Devereux, A G Gosler, and M C J Maiden Dynamics of Campylobacter colonization of a natural host, Sturnus vulgaris (European Starling) Environ Microbiol. 2009 January; 11(1): 258–267. doi:10.1111/j.1462-2920.2008.01773.x.
- ^ Van Houten, Clay; Musgrave, Karl; Weidenbach, Kelly; Murphy, Tracy; Manley, Wanda; Geissler, Aimee; Pride, Kerry R.; et al. (December 9, 2011). "Notes from the Field: Campylobacter jejuni Infections Associated with Sheep Castration—Wyoming, 2011". Morbidity and Mortality Weekly Report (MMWR). CDC. Retrieved December 9, 2011.
- ^ Parkhill et al.; Wren, BW; Mungall, K; Ketley, JM; Churcher, C; Basham, D; Chillingworth, T; Davies, RM et al. (2000). "The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences". Nature 403 (6770): 665–668. doi:10.1038/35001088. PMID 10688204.
Zendehbad, B., et al. (2013). "Identification and antimicrobial resistance of< i> Campylobacter species isolated from poultry meat in Khorasan province, Iran." Food Control.
External links
- Campylobacter jejuni genomes and related information at PATRIC, a Bioinformatics Resource Center funded by NIAID
- Current research on Campylobacter jejuni at the Norwich Research Park
- Infectious diseases
- Bacterial disease: Proteobacterial G−
- primarily A00–A79, 001–041, 080–109
|
|
α |
Rickettsiales |
Rickettsiaceae/
(Rickettsioses) |
Typhus |
- Rickettsia typhi
- Rickettsia prowazekii
- Epidemic typhus, Brill–Zinsser disease, Flying squirrel typhus
|
|
Spotted
fever |
Tick-borne |
- Rickettsia rickettsii
- Rocky Mountain spotted fever
- Rickettsia conorii
- Rickettsia japonica
- Rickettsia sibirica
- Rickettsia australis
- Rickettsia honei
- Flinders Island spotted fever
- Rickettsia africae
- Rickettsia parkeri
- Rickettsia aeschlimannii
- Rickettsia aeschlimannii infection
|
|
Mite-borne |
- Rickettsia akari
- Orientia tsutsugamushi
|
|
Flea-borne |
|
|
|
|
Anaplasmataceae |
- Ehrlichiosis: Anaplasma phagocytophilum
- Human granulocytic anaplasmosis, Anaplasmosis
- Ehrlichia chaffeensis
- Human monocytotropic ehrlichiosis
- Ehrlichia ewingii
- Ehrlichiosis ewingii infection
|
|
|
Rhizobiales |
Brucellaceae |
|
|
Bartonellaceae |
- Bartonellosis: Bartonella henselae
- Bartonella quintana
- either henselae or quintana
- Bartonella bacilliformis
- Carrion's disease, Verruga peruana
|
|
|
|
β |
Neisseriales |
M+ |
- Neisseria meningitidis/meningococcus
- Meningococcal disease, Waterhouse–Friderichsen syndrome, Meningococcal septicaemia
|
|
M- |
- Neisseria gonorrhoeae/gonococcus
|
|
ungrouped: |
- Eikenella corrodens/Kingella kingae
- Chromobacterium violaceum
- Chromobacteriosis infection
|
|
|
Burkholderiales |
- Burkholderia pseudomallei
- Burkholderia mallei
- Burkholderia cepacia complex
- Bordetella pertussis/Bordetella parapertussis
|
|
|
γ |
Enterobacteriales
(OX-) |
Lac+ |
- Klebsiella pneumoniae
- Rhinoscleroma, Klebsiella pneumonia
- Klebsiella granulomatis
- Klebsiella oxytoca
- Escherichia coli: Enterotoxigenic
- Enteroinvasive
- Enterohemorrhagic
- O157:H7
- O104:H4
- Hemolytic-uremic syndrome
- Enterobacter aerogenes/Enterobacter cloacae
|
|
Slow/weak |
- Serratia marcescens
- Citrobacter koseri/Citrobacter freundii
|
|
Lac- |
H2S+ |
- Salmonella enterica
- Typhoid fever, Paratyphoid fever, Salmonellosis
|
|
H2S- |
- Shigella dysenteriae/sonnei/flexneri/boydii
- Shigellosis, Bacillary dysentery
- Proteus mirabilis/Proteus vulgaris
- Yersinia pestis
- Yersinia enterocolitica
- Yersinia pseudotuberculosis
- Far East scarlet-like fever
|
|
|
|
Pasteurellales |
Haemophilus: |
- H. influenzae
- Haemophilus meningitis
- Brazilian purpuric fever
- H. ducreyi
- H. parainfluenzae
|
|
Pasteurella multocida |
- Pasteurellosis
- Actinobacillus
|
|
Aggregatibacter actinomycetemcomitans |
|
|
|
Legionellales |
- Legionella pneumophila/Legionella longbeachae
- Coxiella burnetii
|
|
Thiotrichales |
|
|
Vibrionaceae |
- Vibrio cholerae
- Vibrio vulnificus
- Vibrio parahaemolyticus
- Vibrio alginolyticus
- Plesiomonas shigelloides
|
|
Pseudomonadales |
- Pseudomonas aeruginosa
- Moraxella catarrhalis
- Acinetobacter baumannii
|
|
Xanthomonadaceae |
- Stenotrophomonas maltophilia
|
|
Cardiobacteriaceae |
|
|
Aeromonadales |
- Aeromonas hydrophila/Aeromonas veronii
|
|
|
ε |
Campylobacterales |
- Campylobacter jejuni
- Campylobacteriosis, Guillain–Barré syndrome
- Helicobacter pylori
- Peptic ulcer, MALT lymphoma, Gastric cancer
- Helicobacter cinaedi
|
|
|
|
|
gr+f/gr+a (t)/gr-p (c)/gr-o
|
drug (J1p, w, n, m, vacc)
|
|
|
|
Food safety
|
|
Adulterants /
food contaminants |
- 3-MCPD
- Aldicarb
- Cyanide
- Formaldehyde
- Lead poisoning
- Melamine
- Mercury in fish
- Sudan I
|
|
Flavorings |
- Monosodium glutamate (MSG)
- Salt
- Sugar
|
|
Microorganisms |
- Botulism
- Campylobacter jejuni
- Clostridium perfringens
- Escherichia coli O104:H4
- Escherichia coli O157:H7
- Hepatitis A
- Hepatitis E
- Listeria
- Norovirus
- Rotavirus
- Salmonella
|
|
Pesticides |
- Chlorpyrifos
- DDT
- Lindane
- Malathion
- Methamidophos
|
|
Preservatives |
- Benzoic acid
- Ethylenediaminetetraacetic acid (EDTA)
- Sodium benzoate
|
|
Sugar substitutes |
- Acesulfame potassium
- Aspartame
- High fructose corn syrup
- health effects
- public relations
- Saccharin
- Sodium cyclamate
- Sorbitol
- Sucralose
|
|
Toxins /
poisons |
- Aflatoxin
- Arsenic contamination of groundwater
- Benzene in soft drinks
- Bisphenol A
- Mycotoxins
- Shellfish poisoning
|
|
Food contamination
incidents |
- 1858 Bradford sweets poisoning
- 1989 Chilean grape scare
- 1993 Jack in the Box E. coli outbreak
- 2005 Indonesia food scare
- 2006 North American E. coli O157:H7 outbreaks
- 2007 Vietnam food scare
- 2008 Canada listeriosis outbreak
- 2008 Chinese milk scandal
- 2008 Irish pork crisis
- 2008 United States salmonellosis outbreak
- 2011 Germany E. coli O104:H4 outbreak
- 2011 Taiwan food scandal
- 2011 United States listeriosis outbreak
- Food safety incidents in China
- Foodborne illness
- outbreaks
- death toll
- United States
- ICA meat repackaging controversy
- Minamata disease
- Starlink corn recall
- Toxic oil syndrome
- 2013 meat adulteration scandal
- 2013 aflatoxin contamination
- 2013 Taiwan food scandal
|
|
Regulatory /
watchdog |
- Acceptable daily intake
- E number
- Food labeling regulations
- Food libel laws
- International Food Safety Network
- Quality Assurance International
|
|
Food processing |
- 4-Hydroxynonenal
- Acid-hydrolyzed vegetable protein
- Acrylamide
- Creutzfeldt–Jakob disease
- Food additives
- Food irradiation
- Heterocyclic amines
- Modified starch
- Nitrosamines
- Polycyclic aromatic hydrocarbon
- Shortening
- Trans fat
|
|
Related topics |
- Curing (food preservation)
- Food marketing
- Food politics
- Food preservation
- Food quality
- Genetically modified food
- Taboo food and drink
|
|