B-cell CLL/lymphoma 2 |
PDB rendering based on 1GJH,1G5M. |
Available structures |
PDB |
Ortholog search: PDBe, RCSB |
List of PDB id codes |
1G5M, 1GJH, 1YSW, 2O21, 2O22, 2O2F, 2W3L, 2XA0, 4AQ3, 4IEH, 4LVT, 4LXD, 4LXE
|
|
|
Identifiers |
Symbols |
BCL2; Bcl-2; PPP1R50 |
External IDs |
OMIM: 151430 MGI: 88138 HomoloGene: 527 ChEMBL: 4860 GeneCards: BCL2 Gene |
Gene Ontology |
Molecular function |
• protease binding
• protein binding
• transcription factor binding
• channel activity
• ubiquitin protein ligase binding
• identical protein binding
• protein homodimerization activity
• sequence-specific DNA binding
• protein heterodimerization activity
• BH3 domain binding
• protein phosphatase 2A binding
|
Cellular component |
• nucleus
• cytoplasm
• mitochondrion
• mitochondrial outer membrane
• endoplasmic reticulum
• endoplasmic reticulum membrane
• cytosol
• membrane
• nuclear membrane
• myelin sheath
• pore complex
|
Biological process |
• G1/S transition of mitotic cell cycle
• protein polyubiquitination
• response to acid
• ossification
• ovarian follicle development
• metanephros development
• branching involved in ureteric bud morphogenesis
• behavioral fear response
• B cell homeostasis
• release of cytochrome c from mitochondria
• regulation of cell-matrix adhesion
• lymphoid progenitor cell differentiation
• B cell lineage commitment
• renal system process
• protein dephosphorylation
• melanin metabolic process
• regulation of nitrogen utilization
• apoptotic process
• humoral immune response
• response to DNA damage stimulus
• actin filament organization
• female pregnancy
• cell aging
• cell death
• male gonad development
• response to radiation
• response to external stimulus
• response to toxic substance
• post-embryonic development
• response to iron ion
• response to UV-B
• response to gamma radiation
• negative regulation of autophagy
• negative regulation of calcium ion transport into cytosol
• regulation of glycoprotein biosynthetic process
• mesenchymal cell development
• positive regulation of neuron maturation
• positive regulation of smooth muscle cell migration
• cell growth
• cell-cell adhesion
• peptidyl-serine phosphorylation
• peptidyl-threonine phosphorylation
• cochlear nucleus development
• gland morphogenesis
• regulation of transmembrane transporter activity
• negative regulation of ossification
• positive regulation of cell growth
• negative regulation of cell growth
• melanocyte differentiation
• negative regulation of cell migration
• positive regulation of B cell proliferation
• hair follicle morphogenesis
• axon regeneration
• regulation of protein stability
• endoplasmic reticulum calcium ion homeostasis
• glomerulus development
• negative regulation of cellular pH reduction
• negative regulation of myeloid cell apoptotic process
• T cell differentiation in thymus
• positive regulation of peptidyl-serine phosphorylation
• negative regulation of osteoblast proliferation
• response to cytokine stimulus
• response to nicotine
• organ growth
• nucleotide-binding domain, leucine rich repeat containing receptor signaling pathway
• positive regulation of multicellular organism growth
• B cell proliferation
• response to drug
• response to hydrogen peroxide
• T cell homeostasis
• negative regulation of apoptotic process
• positive regulation of catalytic activity
• CD8-positive, alpha-beta T cell lineage commitment
• regulation of protein homodimerization activity
• regulation of protein heterodimerization activity
• negative regulation of neuron apoptotic process
• ear development
• regulation of viral genome replication
• innate immune response
• positive regulation of melanocyte differentiation
• negative regulation of mitotic cell cycle
• negative regulation of retinal cell programmed cell death
• regulation of mitochondrial membrane permeability
• focal adhesion assembly
• spleen development
• thymus development
• digestive tract morphogenesis
• developmental growth
• oocyte development
• positive regulation of skeletal muscle fiber development
• pigment granule organization
• homeostasis of number of cells within a tissue
• B cell receptor signaling pathway
• response to glucocorticoid stimulus
• neuron apoptotic process
• defense response to virus
• regulation of mitochondrial membrane potential
• negative regulation of mitochondrial depolarization
• regulation of calcium ion transport
• intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress
• cellular response to organic substance
• reactive oxygen species metabolic process
• intrinsic apoptotic signaling pathway
• positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway
• negative regulation of anoikis
• negative regulation of apoptotic signaling pathway
• positive regulation of intrinsic apoptotic signaling pathway
|
Sources: Amigo / QuickGO |
|
RNA expression pattern |
|
|
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
|
Entrez |
596 |
12043 |
|
Ensembl |
ENSG00000171791 |
ENSMUSG00000057329 |
|
UniProt |
P10415 |
P10417 |
|
RefSeq (mRNA) |
NM_000633 |
NM_009741 |
|
RefSeq (protein) |
NP_000624 |
NP_033871 |
|
Location (UCSC) |
Chr 18:
60.79 – 60.99 Mb |
Chr 1:
106.54 – 106.71 Mb |
|
PubMed search |
[1] |
[2] |
|
|
Bcl-2 (B-cell lymphoma 2), encoded by the BCL2 gene, is the founding member of the Bcl-2 family of regulator proteins that regulate cell death (apoptosis).[1][2]
Bcl-2 derives its name from B-cell lymphoma 2, as it is the second member of a range of proteins initially described in chromosomal translocations involving chromosomes 14 and 18 in follicular lymphomas. Bcl-2 orthologs[3] have been identified in numerous mammals for which complete genome data are available. The two isoforms of Bcl-2, Isoform 1, also known as 1G5M, and Isoform 2, also known as 1G5O/1GJH, exhibit similar fold. However, results in the ability of these isoforms to bind to the BAD and BAK proteins, as well as in the structural topology and electrostatic potential of the binding groove, suggest differences in antiapoptotic activity for the two isoforms [4]
Contents
- 1 Role in disease
- 2 Targeted therapies
- 2.1 Genasense
- 2.2 ABT-737
- 2.3 ABT-199
- 2.4 Others
- 3 Interactions
- 4 Human BCL-2 genes
- 5 See also
- 6 References
- 7 External links
Role in disease[edit]
Damage to the Bcl-2 gene has been identified as a cause of a number of cancers, including melanoma, breast, prostate, chronic lymphocytic leukemia, and lung cancer, and a possible cause of schizophrenia and autoimmunity. It is also a cause of resistance to cancer treatments.
Cancer occurs as the result of a disturbance in the homeostatic balance between cell growth and cell death. Over-expression of anti-apoptotic genes, and under-expression of pro-apoptotic genes, can result in the lack of cell death that is characteristic of cancer. An example can be seen in lymphomas. The over-expression of the anti-apoptotic Bcl-2 protein in lymphocytes alone does not cause cancer. But simultaneous over-expression of Bcl-2 and the proto-oncogene myc may produce aggressive B-cell malignancies including lymphoma.[5] In follicular lymphoma, a chromosomal translocation commonly occurs between the fourteenth and the eighteenth chromosomes—t(14;18) — which places the Bcl-2 gene next to the immunoglobulin heavy chain locus. This fusion gene is deregulated, leading to the transcription of excessively high levels of Bcl-2.[6] This decreases the propensity of these cells for undergoing apoptosis.
Apoptosis also plays a very active role in regulating the immune system. When it is functional, it can cause immune unresponsiveness to self-antigens via both central and peripheral tolerance. In the case of defective apoptosis, it may contribute to etiological aspects of autoimmune diseases.[7] The autoimmune disease, type 1 diabetes can be caused by defective apoptosis, which leads to aberrant T cell AICD and defective peripheral tolerance. Due to the fact that dendritic cells are the most important antigen presenting cells of the immune system, their activity must be tightly regulated by such mechanisms as apoptosis. Researchers have found that mice containing dendritic cells that are Bim -/-, thus unable to induce effective apoptosis, obtain autoimmune diseases more so than those that have normal dendritic cells.[7] Other studies have shown that the lifespan of dendritic cells may be partly controlled by a timer dependent on anti-apoptotic Bcl-2.[7]
Apoptosis plays a very important role in regulating a variety of diseases that have enormous social impacts. For example, schizophrenia is a neurodegenerative disease that may result from an abnormal ratio of pro- and anti-apoptotic factors.[8] There is some evidence that this defective apoptosis may result from abnormal expression of Bcl-2 and increased expression of caspase-3.[8]
Further research into the family of Bcl-2 proteins will provide a more complete picture on how these proteins interact with each other to promote and inhibit apoptosis[citation needed]. An understanding of the mechanisms involved may help develop new therapies for treating cancer, autoimmune conditions, and neurological diseases.
Diagnostic use[edit]
Antibodies to Bcl-2 can be used with immunohistochemistry to identify cells containing the antigen. In healthy tissue, these antibodies will react with B-cells in the mantle zone, as well as some T-cells. However, there is a considerable increase in positive cells in follicular lymphoma, as well as many other forms of cancer. In some cases, the presence or absence of Bcl-2 staining in biopsies may be significant for the patient's prognosis or likelihood of relapse.[9]
Targeted therapies[edit]
Bcl-2 inhibitors include :
Genasense[edit]
An antisense oligonucleotide drug Genasense (G3139) has been developed by Genta Incorporated to target Bcl-2. An antisense DNA or RNA strand is non-coding and complementary to the coding strand (which is the template for producing respectively RNA or protein). An antisense drug is a short sequence of RNA that hybridises with and inactivates mRNA, preventing the protein from being formed.
It was shown that the proliferation of human lymphoma cells (with t(14;18) translocation) could be inhibited by antisense RNA targeted at the start codon region of Bcl-2 mRNA. In vitro studies led to the identification of Genasense, which is complementary to the first 6 codons of Bcl-2 mRNA.[10]
These have shown successful results in Phase I/II trials for lymphoma, and a large Phase III trial was launched in 2004[11]
By the first quarter 2010, Genasense had not received FDA approval due to disappointing results in a melanoma trial. Although safety and efficacy of Genasense have not been established for any use, Genta Incorporated still claims on its website that studies are currently underway to examine the potential role of Genasense in a variety of clinical indications.
ABT-737[edit]
Abbott Laboratories described in the mid-2000s a novel inhibitor of Bcl-2, Bcl-xL and Bcl-w, known as ABT-737.[12] ABT-737 is one among many so-called BH3 mimetic small molecule inhibitors (SMI) targeting Bcl-2 and Bcl-2-related proteins such as Bcl-xL and Bcl-w but not A1 and Mcl-1, which may prove valuable in the therapy of lymphoma and other blood cancers.[13]
ABT-199[edit]
A Phase Ia trial is currently ongoing to study the effects of agent, ABT-199, a so-called BH3-mimetic drug designed to block the function of the Bcl-2 protein, on patients with chronic lymphocytic leukemia.[14]
January 17, 2013 The study had suspended participant recruitment per a temporary hold [15]
Others[edit]
- obatoclax (GX15-070) has phase II results for small-cell lung cancer.[16]
Interactions[edit]
Overview of signal transduction pathways involved in apoptosis.
Bcl-2 has been shown to interact with RAD9A,[17] BAK1,[18][19] Reticulon 4,[20] Bcl-2-associated X protein,[17][18][21][22] Caspase 8,[23][24] BECN1,[25] SOD1,[26] Bcl-2-interacting killer,[27][28] BH3 interacting domain death agonist,[27][29] RRAS,[30] C-Raf,[31] BCL2L11,[27][32][33] BNIPL,[34][35] HRK,[27][36] PSEN1,[37] BMF,[38] BNIP2,[34][39] BNIP3,[39][40] Nerve Growth factor IB,[18] BCL2-like 1,[18][41] Myc,[42] BCAP31,[43] SMN1,[44] CAPN2,[45] PPP2CA,[46] Noxa,[27][47] Cdk1,[48][49] TP53BP2,[50] Bcl-2-associated death promoter[27][51] and IRS1.[52]
Human BCL-2 genes[edit]
BAK; BAK1; BAX; BCL2; BCL2A1; BCL2L1; BCL2L10; BCL2L13; BCL2L14; BCL2L2; BCL2L7P1; BOK; MCL1; LGALS7 (Galectin-7)
See also[edit]
- Apoptosis
- Apoptosome
- Bcl-2 homologous antagonist killer (BAK)
- Bcl-2-associated X protein (BAX)
- BH3 interacting domain death agonist (BID)
- Caspases
- Cytochrome c
- Noxa
- Mitochondrion
- Microphthalmia-associated transcription factor
- p53 upregulated modulator of apoptosis (PUMA)
References[edit]
- ^ Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM (November 1984). "Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation". Science 226 (4678): 1097–99. doi:10.1126/science.6093263. PMID 6093263.
- ^ Cleary ML, Smith SD, Sklar J (October 1986). "Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation". Cell 47 (1): 19–28. doi:10.1016/0092-8674(86)90362-4. PMID 2875799.
- ^ "OrthoMaM phylogenetic marker: Bcl-2 coding sequence".
- ^ "Human Bcl2, Isoform 1".
- ^ Otake Y, Soundararajan S, Sengupta TK, Kio EA, Smith JC, Pineda-Roman M, Stuart RK, Spicer EK, Fernandes DJ (April 2007). "Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA". Blood 109 (7): 3069–75. doi:10.1182/blood-2006-08-043257. PMC 1852223. PMID 17179226.
- ^ Vaux DL, Cory S, Adams JM (September 1988). "Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells". Nature 335 (6189): 440–2. doi:10.1038/335440a0. PMID 3262202.
- ^ a b c Li A, Ojogho O, Escher A (2006). "Saving death: apoptosis for intervention in transplantation and autoimmunity". Clin. Dev. Immunol. 13 (2–4): 273–82. doi:10.1080/17402520600834704. PMC 2270759. PMID 17162368.
- ^ a b Glantz LA, Gilmore JH, Lieberman JA, Jarskog LF (January 2006). "Apoptotic mechanisms and the synaptic pathology of schizophrenia". Schizophr. Res. 81 (1): 47–63. doi:10.1016/j.schres.2005.08.014. PMID 16226876.
- ^ Leong, Anthony S-Y; Cooper, Kumarason; Leong, F Joel W-M (2003). Manual of Diagnostic Cytology (2 ed.). Greenwich Medical Media, Ltd. pp. XX. ISBN 1-84110-100-1.
- ^ Dias N, Stein CA (November 2002). "Potential roles of antisense oligonucleotides in cancer therapy. The example of Bcl-2 antisense oligonucleotides". Eur J Pharm Biopharm 54 (3): 263–9. doi:10.1016/S0939-6411(02)00060-7. PMID 12445555.
- ^ Mavromatis BH, Cheson BD (June 2004). "Novel therapies for chronic lymphocytic leukemia". Blood Rev. 18 (2): 137–48. doi:10.1016/S0268-960X(03)00039-0. PMID 15010151.
- ^ Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O'Connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (June 2005). "An inhibitor of Bcl-2 family proteins induces regression of solid tumours". Nature 435 (7042): 677–81. doi:10.1038/nature03579. PMID 15902208.
- ^ Reed JC, Pellecchia M (July 2005). "Apoptosis-based therapies for hematologic malignancies". Blood 106 (2): 408–18. doi:10.1182/blood-2004-07-2761. PMID 15797997.
- ^ http://www.asianscientist.com/tech-pharma/abt-199-bh-3-mimetic-wehi-phase-ia-trial-chronic-lymphocytic-leukemia/
- ^ http://clinicaltrials.gov/show/NCT01328626
- ^ http://www.genengnews.com/gen-news-highlights/cephalon-to-spend-225m-to-purchase-gemin-x-for-phase-ii-sclc-candidate/81244855/
- ^ a b Komatsu, K; Miyashita T, Hang H, Hopkins K M, Zheng W, Cuddeback S, Yamada M, Lieberman H B, Wang H G (Jan. 2000). "Human homologue of S. pombe Rad9 interacts with BCL-2/BCL-xL and promotes apoptosis". Nat. Cell Biol. (ENGLAND) 2 (1): 1–6. doi:10.1038/71316. ISSN 1465-7392. PMID 10620799.
- ^ a b c d Lin, Bingzhen; Kolluri Siva Kumar, Lin Feng, Liu Wen, Han Young-Hoon, Cao Xihua, Dawson Marcia I, Reed John C, Zhang Xiao-kun (Feb. 2004). "Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3". Cell (United States) 116 (4): 527–40. doi:10.1016/S0092-8674(04)00162-X. ISSN 0092-8674. PMID 14980220.
- ^ Enyedy, I J; Ling Y, Nacro K, Tomita Y, Wu X, Cao Y, Guo R, Li B, Zhu X, Huang Y, Long Y Q, Roller P P, Yang D, Wang S (Dec. 2001). "Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening". Journal of Medicinal Chemistry (United States) 44 (25): 4313–24. doi:10.1021/jm010016f. ISSN 0022-2623. PMID 11728179.
- ^ Tagami, S; Eguchi Y, Kinoshita M, Takeda M, Tsujimoto Y (Nov. 2000). "A novel protein, RTN-XS, interacts with both Bcl-XL and Bcl-2 on endoplasmic reticulum and reduces their anti-apoptotic activity". Oncogene (England) 19 (50): 5736–46. doi:10.1038/sj.onc.1203948. ISSN 0950-9232. PMID 11126360.
- ^ Hoetelmans, R W M (Jun. 2004). "Nuclear partners of Bcl-2: Bax and PML". DNA Cell Biol. (United States) 23 (6): 351–4. doi:10.1089/104454904323145236. ISSN 1044-5498. PMID 15231068.
- ^ Oltvai, Z N; Milliman C L, Korsmeyer S J (Aug. 1993). "Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death". Cell (UNITED STATES) 74 (4): 609–19. doi:10.1016/0092-8674(93)90509-O. ISSN 0092-8674. PMID 8358790.
- ^ Poulaki, V; Mitsiades N, Romero M E, Tsokos M (Jun. 2001). "Fas-mediated apoptosis in neuroblastoma requires mitochondrial activation and is inhibited by FLICE inhibitor protein and Bcl-2". Cancer Res. (United States) 61 (12): 4864–72. ISSN 0008-5472. PMID 11406564.
- ^ Guo, Yin; Srinivasula Srinivasa M, Druilhe Anne, Fernandes-Alnemri Teresa, Alnemri Emad S (Apr. 2002). "Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria". J. Biol. Chem. (United States) 277 (16): 13430–7. doi:10.1074/jbc.M108029200. ISSN 0021-9258. PMID 11832478.
- ^ Liang, X H; Kleeman L K, Jiang H H, Gordon G, Goldman J E, Berry G, Herman B, Levine B (Nov. 1998). "Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein". J. Virol. (UNITED STATES) 72 (11): 8586–96. ISSN 0022-538X. PMC 110269. PMID 9765397.
- ^ Pasinelli, Piera; Belford Mary Elizabeth, Lennon Niall, Bacskai Brian J, Hyman Bradley T, Trotti Davide, Brown Robert H (Jul. 2004). "Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria". Neuron (United States) 43 (1): 19–30. doi:10.1016/j.neuron.2004.06.021. ISSN 0896-6273. PMID 15233914.
- ^ a b c d e f Chen, Lin; Willis Simon N, Wei Andrew, Smith Brian J, Fletcher Jamie I, Hinds Mark G, Colman Peter M, Day Catherine L, Adams Jerry M, Huang David C S (Feb. 2005). "Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function". Mol. Cell (United States) 17 (3): 393–403. doi:10.1016/j.molcel.2004.12.030. ISSN 1097-2765. PMID 15694340.
- ^ Gillissen, Bernhard; Essmann Frank, Graupner Vilma, Stärck Lilian, Radetzki Silke, Dörken Bernd, Schulze-Osthoff Klaus, Daniel Peter T (Jul. 2003). "Induction of cell death by the BH3-only Bcl-2 homolog Nbk/Bik is mediated by an entirely Bax-dependent mitochondrial pathway". EMBO J. (England) 22 (14): 3580–90. doi:10.1093/emboj/cdg343. ISSN 0261-4189. PMC 165613. PMID 12853473.
- ^ Real, Pedro Jose; Cao Yeyu, Wang Renxiao, Nikolovska-Coleska Zaneta, Sanz-Ortiz Jaime, Wang Shaomeng, Fernandez-Luna Jose Luis (Nov. 2004). "Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2". Cancer Res. (United States) 64 (21): 7947–53. doi:10.1158/0008-5472.CAN-04-0945. ISSN 0008-5472. PMID 15520201.
- ^ Fernandez-Sarabia, M J; Bischoff J R (Nov. 1993). "Bcl-2 associates with the ras-related protein R-ras p23". Nature (ENGLAND) 366 (6452): 274–5. doi:10.1038/366274a0. ISSN 0028-0836. PMID 8232588.
- ^ Wang, H G; Rapp U R, Reed J C (Nov. 1996). "Bcl-2 targets the protein kinase Raf-1 to mitochondria". Cell (UNITED STATES) 87 (4): 629–38. doi:10.1016/S0092-8674(00)81383-5. ISSN 0092-8674. PMID 8929532.
- ^ O'Connor, L; Strasser A, O'Reilly L A, Hausmann G, Adams J M, Cory S, Huang D C (Jan. 1998). "Bim: a novel member of the Bcl-2 family that promotes apoptosis". EMBO J. (ENGLAND) 17 (2): 384–95. doi:10.1093/emboj/17.2.384. ISSN 0261-4189. PMC 1170389. PMID 9430630.
- ^ Hsu, S Y; Lin P, Hsueh A J (Sep. 1998). "BOD (Bcl-2-related ovarian death gene) is an ovarian BH3 domain-containing proapoptotic Bcl-2 protein capable of dimerization with diverse antiapoptotic Bcl-2 members". Mol. Endocrinol. (UNITED STATES) 12 (9): 1432–40. doi:10.1210/me.12.9.1432. ISSN 0888-8809. PMID 9731710.
- ^ a b Qin, Wenxin; Hu Jian, Guo Minglei, Xu Jian, Li Jinjun, Yao Genfu, Zhou Xiaomei, Jiang Huiqiu, Zhang Pingping, Shen Li, Wan Dafang, Gu Jianren (Aug. 2003). "BNIPL-2, a novel homologue of BNIP-2, interacts with Bcl-2 and Cdc42GAP in apoptosis". Biochem. Biophys. Res. Commun. (United States) 308 (2): 379–85. doi:10.1016/S0006-291X(03)01387-1. ISSN 0006-291X. PMID 12901880.
- ^ Yasuda, M; Han J W, Dionne C A, Boyd J M, Chinnadurai G (Feb. 1999). "BNIP3alpha: a human homolog of mitochondrial proapoptotic protein BNIP3". Cancer Res. (UNITED STATES) 59 (3): 533–7. ISSN 0008-5472. PMID 9973195.
- ^ Inohara, N; Ding L, Chen S, Núñez G (Apr. 1997). "harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L)". EMBO J. (ENGLAND) 16 (7): 1686–94. doi:10.1093/emboj/16.7.1686. ISSN 0261-4189. PMC 1169772. PMID 9130713.
- ^ Alberici, A; Moratto D, Benussi L, Gasparini L, Ghidoni R, Gatta L B, Finazzi D, Frisoni G B, Trabucchi M, Growdon J H, Nitsch R M, Binetti G (Oct. 1999). "Presenilin 1 protein directly interacts with Bcl-2". J. Biol. Chem. (UNITED STATES) 274 (43): 30764–9. doi:10.1074/jbc.274.43.30764. ISSN 0021-9258. PMID 10521466.
- ^ Puthalakath, H; Villunger A, O'Reilly L A, Beaumont J G, Coultas L, Cheney R E, Huang D C, Strasser A (Sep. 2001). "Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis". Science (United States) 293 (5536): 1829–32. doi:10.1126/science.1062257. ISSN 0036-8075. PMID 11546872.
- ^ a b Boyd, J M; Malstrom S, Subramanian T, Venkatesh L K, Schaeper U, Elangovan B, D'Sa-Eipper C, Chinnadurai G (Oct. 1994). "Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins". Cell (UNITED STATES) 79 (2): 341–51. doi:10.1016/0092-8674(94)90202-X. ISSN 0092-8674. PMID 7954800.
- ^ Ray, R; Chen G, Vande Velde C, Cizeau J, Park J H, Reed J C, Gietz R D, Greenberg A H (Jan. 2000). "BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites". J. Biol. Chem. (UNITED STATES) 275 (2): 1439–48. doi:10.1074/jbc.275.2.1439. ISSN 0021-9258. PMID 10625696.
- ^ Zhang, Haichao; Nimmer Paul, Rosenberg Saul H, Ng Shi-Chung, Joseph Mary (Aug. 2002). "Development of a high-throughput fluorescence polarization assay for Bcl-x(L)". Anal. Biochem. (United States) 307 (1): 70–5. doi:10.1016/S0003-2697(02)00028-3. ISSN 0003-2697. PMID 12137781.
- ^ Jin, Zhaohui; Gao Fengqin, Flagg Tammy, Deng Xingming (Sep. 2004). "Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation". J. Biol. Chem. (United States) 279 (38): 40209–19. doi:10.1074/jbc.M404056200. ISSN 0021-9258. PMID 15210690.
- ^ Ng, F W; Nguyen M, Kwan T, Branton P E, Nicholson D W, Cromlish J A, Shore G C (Oct. 1997). "p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum". J. Cell Biol. (UNITED STATES) 139 (2): 327–38. doi:10.1083/jcb.139.2.327. ISSN 0021-9525. PMC 2139787. PMID 9334338.
- ^ Iwahashi, H; Eguchi Y, Yasuhara N, Hanafusa T, Matsuzawa Y, Tsujimoto Y (Nov. 1997). "Synergistic anti-apoptotic activity between Bcl-2 and SMN implicated in spinal muscular atrophy". Nature (ENGLAND) 390 (6658): 413–7. doi:10.1038/37144. ISSN 0028-0836. PMID 9389483.
- ^ Gil-Parrado, Shirley; Fernández-Montalván Amaury, Assfalg-Machleidt Irmgard, Popp Oliver, Bestvater Felix, Holloschi Andreas, Knoch Tobias A, Auerswald Ennes A, Welsh Katherine, Reed John C, Fritz Hans, Fuentes-Prior Pablo, Spiess Eberhard, Salvesen Guy S, Machleidt Werner (Jul. 2002). "Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members". J. Biol. Chem. (United States) 277 (30): 27217–26. doi:10.1074/jbc.M202945200. ISSN 0021-9258. PMID 12000759.
- ^ Deng, X; Ito T, Carr B, Mumby M, May W S (Dec. 1998). "Reversible phosphorylation of Bcl2 following interleukin 3 or bryostatin 1 is mediated by direct interaction with protein phosphatase 2A". J. Biol. Chem. (UNITED STATES) 273 (51): 34157–63. doi:10.1074/jbc.273.51.34157. ISSN 0021-9258. PMID 9852076.
- ^ Oda, E; Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (May. 2000). "Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis". Science (UNITED STATES) 288 (5468): 1053–8. doi:10.1126/science.288.5468.1053. ISSN 0036-8075. PMID 10807576.
- ^ Pathan, N; Aime-Sempe C, Kitada S, Basu A, Haldar S, Reed J C (2001). "Microtubule-targeting drugs induce bcl-2 phosphorylation and association with Pin1". Neoplasia (United States) 3 (6): 550–9. doi:10.1038/sj/neo/7900213. ISSN 1522-8002. PMC 1506558. PMID 11774038.
- ^ Pathan, N; Aime-Sempe C, Kitada S, Haldar S, Reed J C (2001). "Microtubule-targeting drugs induce Bcl-2 phosphorylation and association with Pin1". Neoplasia (United States) 3 (1): 70–9. doi:10.1038/sj/neo/7900131. ISSN 1522-8002. PMC 1505024. PMID 11326318.
- ^ Naumovski, L; Cleary M L (Jul. 1996). "The p53-binding protein 53BP2 also interacts with Bc12 and impedes cell cycle progression at G2/M". Mol. Cell. Biol. (UNITED STATES) 16 (7): 3884–92. ISSN 0270-7306. PMC 231385. PMID 8668206.
- ^ Yang, E; Zha J, Jockel J, Boise L H, Thompson C B, Korsmeyer S J (Jan. 1995). "Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death". Cell (UNITED STATES) 80 (2): 285–91. doi:10.1016/0092-8674(95)90411-5. ISSN 0092-8674. PMID 7834748.
- ^ Ueno, H; Kondo E, Yamamoto-Honda R, Tobe K, Nakamoto T, Sasaki K, Mitani K, Furusaka A, Tanaka T, Tsujimoto Y, Kadowaki T, Hirai H (Feb. 2000). "Association of insulin receptor substrate proteins with Bcl-2 and their effects on its phosphorylation and antiapoptotic function". Mol. Biol. Cell (UNITED STATES) 11 (2): 735–46. ISSN 1059-1524. PMC 14806. PMID 10679027.
External links[edit]
- The Bcl-2 Family Database
- The Bcl-2 Family at celldeath.de
- Bcl-2 publications sorted by impact at caspases.org
- bcl-2 Genes at the US National Library of Medicine Medical Subject Headings (MeSH)
- c-bcl-2 Proteins at the US National Library of Medicine Medical Subject Headings (MeSH)
Neoplasm: Tumor suppressor genes/proteins and Oncogenes/Proto-oncogenes
|
|
Ligand |
|
|
Receptor |
Wnt signaling pathway
|
|
|
Hedgehog signaling pathway
|
|
|
TGF beta signaling pathway
|
|
|
Receptor tyrosine kinase
|
- ONCO: ErbB/c-ErbB
- c-Met
- c-Ret
|
|
JAK-STAT signaling pathway
|
|
|
|
Intracellular signaling P+Ps |
Wnt signaling pathway
|
- ONCO: Beta-catenin
- TSP: APC
|
|
TGF beta signaling pathway
|
|
|
Akt/PKB signaling pathway
|
|
|
Hippo signaling pathway
|
TSP: Neurofibromin 2/Merlin
|
|
MAPK/ERK pathway
|
- TSP: Neurofibromin 1
- ONCO: c-Ras
- HRAS
- c-Raf
|
|
Other/unknown
|
|
|
|
Nucleus |
Cell cycle
|
- TSP: p53
- pRb
- WT1
- p16/p14arf
- ONCO: CDK4
- Cyclin D
- Cyclin E
|
|
DNA repair/Fanconi
|
|
|
Ubiquitin ligase
|
|
|
Transcription factor
|
- TSP: KLF6
- ONCO: AP-1
- c-Myc
|
|
|
Mitochondria |
- Apoptosis inhibitor: SDHB
- SDHD
|
|
Other/ungrouped |
- c-Bcl-2 - Notch - Stathmin
|
|
|
|
Apoptosis signaling pathway
|
|
Fas path |
Ligand
|
|
|
Receptor
|
|
|
Intracellular
|
- Death-inducing signaling complex
- Cytochrome c
- Caspase 9
- Caspase 3
- Pro-apoptotic:
- BAX
- BAK1/Bcl-2 homologous antagonist killer
- Bcl-2-associated death promoter
- Anti-apoptotic:
- Bcl-2
- Bcl-xL
|
|
|
TNF path |
Ligand
|
|
|
Receptor
|
- Tumor necrosis factor receptor
|
|
Intracellular
|
- FADD
- Caspase 8
- Caspase 3
- BID
- TRAF2
- ASK-1
- MEKK1
- IKK
- IκBα
- MKK7
- JNK
- NF-κB
|
|
|
Other |
Intracellular
|
- IAPs
- XIAP
- NAIP
- Survivin
- c-IAP-1
- c-IAP-2
- Apoptosis-inducing factor
|
|
|
B trdu: iter (nrpl/grfl/cytl/horl), csrc (lgic, enzr, gprc, igsr, intg, nrpr/grfr/cytr), itra (adap, gbpr, mapk), calc, lipd; path (hedp, wntp, tgfp+mapp, notp, jakp, fsap, hipp, tlrp)
|
|