BCL2 |
|
Available structures |
PDB |
Ortholog search: PDBe RCSB |
List of PDB id codes |
1G5M, 1GJH, 1YSW, 2O21, 2O22, 2O2F, 2W3L, 2XA0, 4AQ3, 4IEH, 4LVT, 4LXD, 4MAN, 5AGW, 5AGX, 5FCG
|
|
|
Identifiers |
Aliases |
BCL2, Bcl-2, PPP1R50, B-cell CLL/lymphoma 2, apoptosis regulator |
External IDs |
OMIM: 151430 MGI: 88138 HomoloGene: 527 GeneCards: BCL2 |
|
Genetically Related Diseases |
chronic lymphocytic leukemia[1] |
|
Targeted by Drug |
navitoclax[2] |
Gene ontology |
Molecular function |
• protein phosphatase binding
• transcription factor binding
• protein phosphatase 2A binding
• channel inhibitor activity
• protein homodimerization activity
• channel activity
• protease binding
• protein binding
• sequence-specific DNA binding
• BH3 domain binding
• identical protein binding
• protein heterodimerization activity
• ubiquitin protein ligase binding
|
Cellular component |
• cytoplasm
• cytosol
• nuclear membrane
• membrane
• mitochondrion
• nucleus
• mitochondrial membrane
• myelin sheath
• mitochondrial outer membrane
• endoplasmic reticulum
• pore complex
• integral component of membrane
• intracellular
• endoplasmic reticulum membrane
• nucleoplasm
|
Biological process |
• negative regulation of neuron apoptotic process
• intrinsic apoptotic signaling pathway in response to oxidative stress
• ureteric bud development
• hemopoiesis
• renal system process
• organ growth
• T cell differentiation in thymus
• lymphocyte homeostasis
• response to steroid hormone
• positive regulation of catalytic activity
• ear development
• glomerulus development
• post-embryonic development
• cellular response to DNA damage stimulus
• T cell homeostasis
• negative regulation of ossification
• negative regulation of G1/S transition of mitotic cell cycle
• positive regulation of smooth muscle cell migration
• regulation of protein localization
• cell aging
• T cell differentiation
• B cell lineage commitment
• response to ischemia
• regulation of mitochondrial membrane permeability
• humoral immune response
• defense response to virus
• mesenchymal cell development
• positive regulation of multicellular organism growth
• animal organ morphogenesis
• developmental pigmentation
• hair follicle morphogenesis
• B cell differentiation
• cell proliferation
• metanephros development
• melanocyte differentiation
• negative regulation of autophagy
• positive regulation of neuron maturation
• negative regulation of myeloid cell apoptotic process
• cellular response to hypoxia
• pigment granule organization
• negative regulation of cell proliferation
• B cell receptor signaling pathway
• cellular response to organic substance
• regulation of apoptotic process
• response to cytokine
• cellular response to glucose starvation
• regulation of protein stability
• ossification
• positive regulation of melanocyte differentiation
• axon regeneration
• kidney development
• actin filament organization
• thymus development
• negative regulation of intrinsic apoptotic signaling pathway
• negative regulation of apoptotic signaling pathway
• response to nicotine
• spleen development
• endoplasmic reticulum calcium ion homeostasis
• positive regulation of skeletal muscle fiber development
• response to oxidative stress
• lymphoid progenitor cell differentiation
• positive regulation of peptidyl-serine phosphorylation
• CD8-positive, alpha-beta T cell lineage commitment
• reactive oxygen species metabolic process
• negative regulation of retinal cell programmed cell death
• growth
• cell growth
• branching involved in ureteric bud morphogenesis
• gland morphogenesis
• positive regulation of cell growth
• positive regulation of B cell proliferation
• negative regulation of cell growth
• response to gamma radiation
• positive regulation of intrinsic apoptotic signaling pathway
• response to toxic substance
• digestive tract morphogenesis
• neuron apoptotic process
• single organismal cell-cell adhesion
• male gonad development
• regulation of protein heterodimerization activity
• regulation of glycoprotein biosynthetic process
• regulation of viral genome replication
• female pregnancy
• negative regulation of mitochondrial depolarization
• protein dephosphorylation
• protein polyubiquitination
• negative regulation of apoptotic process
• cellular calcium ion homeostasis
• B cell homeostasis
• behavioral fear response
• oocyte development
• regulation of cell-matrix adhesion
• response to iron ion
• negative regulation of cell migration
• regulation of autophagy
• positive regulation of developmental pigmentation
• developmental growth
• regulation of transmembrane transporter activity
• ovarian follicle development
• regulation of gene expression
• negative regulation of calcium ion transport into cytosol
• negative regulation of osteoblast proliferation
• homeostasis of number of cells within a tissue
• pigmentation
• response to radiation
• regulation of catalytic activity
• peptidyl-threonine phosphorylation
• regulation of protein homodimerization activity
• negative regulation of anoikis
• response to hydrogen peroxide
• T cell lineage commitment
• cochlear nucleus development
• leukocyte homeostasis
• regulation of programmed cell death
• regulation of calcium ion transport
• axonogenesis
• negative regulation of cellular pH reduction
• response to glucocorticoid
• regulation of cell cycle
• regulation of mitochondrial membrane potential
• melanin metabolic process
• focal adhesion assembly
• positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway
• B cell proliferation
• intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress
• immune system development
• apoptotic mitochondrial changes
• peptidyl-serine phosphorylation
• regulation of nitrogen utilization
• cell morphogenesis
• positive regulation of cell proliferation
• negative regulation of reactive oxygen species metabolic process
• response to UV-B
• regulation of developmental pigmentation
• negative regulation of extrinsic apoptotic signaling pathway in absence of ligand
• extrinsic apoptotic signaling pathway via death domain receptors
• response to drug
• release of cytochrome c from mitochondria
• negative regulation of mitotic cell cycle
• extrinsic apoptotic signaling pathway in absence of ligand
• apoptotic process
• transmembrane transport
|
Sources:Amigo / QuickGO |
|
RNA expression pattern |
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
Entrez |
|
|
Ensembl |
|
|
UniProt |
|
|
RefSeq (mRNA) |
|
|
RefSeq (protein) |
|
|
NP_033871.2
NP_033871
NP_803129
|
|
Location (UCSC) |
Chr 18: 63.12 – 63.32 Mb |
Chr 1: 106.54 – 106.71 Mb |
PubMed search |
[3] |
[4] |
Wikidata |
View/Edit Human |
View/Edit Mouse |
Bcl-2 (B-cell lymphoma 2), encoded in humans by the BCL2 gene, is the founding member of the Bcl-2 family of regulator proteins that regulate cell death (apoptosis), by either inducing (pro-apoptotic) or inhibiting (anti-apoptotic) apoptosis.[5][6] Bcl-2 is specifically considered an important anti-apoptotic protein but it is NOT considered a proto-oncogene because it is not a growth signal transducer.
Bcl-2 derives its name from B-cell lymphoma 2, as it is the second member of a range of proteins initially described in chromosomal translocations involving chromosomes 14 and 18 in follicular lymphomas. Orthologs[7] (such as Bcl2 in mice) have been identified in numerous mammals for which complete genome data are available.
Like BCL3, BCL5, BCL6, BCL7A, BCL9, and BCL10, it has clinical significance in lymphoma.
Contents
- 1 Isoforms
- 2 Normal physiological function
- 3 Role in disease
- 3.1 Cancer
- 3.2 Auto-immune diseases
- 3.3 Other
- 4 Diagnostic use
- 5 Targeted therapies
- 5.1 Genasense
- 5.2 ABT-737 and Navitoclax (ABT-263)
- 5.3 Venetoclax (ABT-199)
- 6 Interactions
- 7 Human BCL-2 genes
- 8 See also
- 9 References
- 10 External links
Isoforms
The two isoforms of Bcl-2, Isoform 1, also known as 1G5M, and Isoform 2, also known as 1G5O/1GJH, exhibit a similar fold. However, results in the ability of these isoforms to bind to the BAD and BAK proteins, as well as in the structural topology and electrostatic potential of the binding groove, suggest differences in antiapoptotic activity for the two isoforms [8]
Normal physiological function
BCL-2 is localized to the outer membrane of mitochondria, where it plays an important role in promoting cellular survival and inhibiting the actions of pro-apoptotic proteins. The pro-apoptotic proteins in the BCL-2 family, including Bax and Bak, normally act on the mitochondrial membrane to promote permeabilization and release of cytochrome C and ROS, that are important signals in the apoptosis cascade. These pro-apoptotic proteins are in turn activated by BH3-only proteins, and are inhibited by the function of BCL-2 and its relative BCL-Xl.[9]
There are additional non-canonical roles of BCL-2 that are being explored. BLC-2 is known to regulate mitochondrial dynamics, and is involved in the regulation of mitochondrial fusion and fission. Additionally, in pancreatic beta-cells, BCL-2 and BCL-Xl are known to be involved in controlling metabolic activity and insulin secretion, with inhibition of BCL-2/Xl showing increasing metabolic activity, but also additional ROS production; this suggests it has a protective metabolic effect in conditions of high demand.[citation needed]
Role in disease
See also: Apoptosis implication in disease
Damage to the Bcl-2 gene has been identified as a cause of a number of cancers, including melanoma, breast, prostate, chronic lymphocytic leukemia, and lung cancer, and a possible cause of schizophrenia and autoimmunity. It is also a cause of resistance to cancer treatments.[citation needed]
Cancer
Cancer can be seen as a disturbance in the homeostatic balance between cell growth and cell death. Over-expression of anti-apoptotic genes, and under-expression of pro-apoptotic genes, can result in the lack of cell death that is characteristic of cancer. An example can be seen in lymphomas. The over-expression of the anti-apoptotic Bcl-2 protein in lymphocytes alone does not cause cancer. But simultaneous over-expression of Bcl-2 and the proto-oncogene myc may produce aggressive B-cell malignancies including lymphoma.[10] In follicular lymphoma, a chromosomal translocation commonly occurs between the fourteenth and the eighteenth chromosomes — t(14;18) — which places the Bcl-2 gene from chromosome 18 next to the immunoglobulin heavy chain locus on chromosome 14. This fusion gene is deregulated, leading to the transcription of excessively high levels of Bcl-2.[11] This decreases the propensity of these cells for apoptosis.
Auto-immune diseases
Apoptosis plays an active role in regulating the immune system. When it is functional, it can cause immune unresponsiveness to self-antigens via both central and peripheral tolerance. In the case of defective apoptosis, it may contribute to etiological aspects of autoimmune diseases.[12] The autoimmune disease type 1 diabetes can be caused by defective apoptosis, which leads to aberrant T cell AICD and defective peripheral tolerance. Due to the fact that dendritic cells are the immune system's most important antigen-presenting cells, their activity must be tightly regulated by mechanisms such as apoptosis. Researchers have found that mice containing dendritic cells that are Bim -/-, thus unable to induce effective apoptosis, suffer autoimmune diseases more so than those that have normal dendritic cells.[12] Other studies have shown that dendritic cell lifespan may be partly controlled by a timer dependent on anti-apoptotic Bcl-2.[12]
Other
Apoptosis plays an important role in regulating a variety of diseases. For example, schizophrenia is a neurodegenerative disease that may result from an abnormal ratio of pro- and anti-apoptotic factors.[13] Some evidence suggests that this may result from abnormal expression of Bcl-2 and increased expression of caspase-3.[13]
Diagnostic use
Antibodies to Bcl-2 can be used with immunohistochemistry to identify cells containing the antigen. In healthy tissue, these antibodies react with B-cells in the mantle zone, as well as some T-cells. However, positive cells increase considerably in follicular lymphoma, as well as many other forms of cancer. In some cases, the presence or absence of Bcl-2 staining in biopsies may be significant for the patient's prognosis or likelihood of relapse.[14]
Targeted therapies
Targeted and selective Bcl-2 inhibitors currently in the clinic include :
Genasense
An antisense oligonucleotide drug Genasense (G3139) was developed by Genta Incorporated to target Bcl-2. An antisense DNA or RNA strand is non-coding and complementary to the coding strand (which is the template for producing respectively RNA or protein). An antisense drug is a short sequence of RNA that hybridises with and inactivates mRNA, preventing the protein from being formed.
Human lymphoma cell proliferation (with t(14;18) translocation) could be inhibited by antisense RNA targeted at the start codon region of Bcl-2 mRNA. In vitro studies led to the identification of Genasense, which is complementary to the first 6 codons of Bcl-2 mRNA.[15]
These showed successful results in Phase I/II trials for lymphoma. A large Phase III trial was launched in 2004.[16] As of 2016, the drug had not been approved and its developer was out of business.[17]
ABT-737 and Navitoclax (ABT-263)
In the mid-2000s, Abbott Laboratories developed a novel inhibitor of Bcl-2, Bcl-xL and Bcl-w, known as ABT-737. This compound is part of a group of BH3 mimetic small molecule inhibitors (SMI) that target these Bcl-2 family proteins, but not A1 or Mcl-1. ABT-737 is superior to previous BCL-2 inhibitors given its higher affinity for Bcl-2, Bcl-xL and Bcl-w. In vitro studies showed that primary cells from patients with B-cell malignancies are sensitive to ABT-737.[18] ABT-737 does not directly induce apoptosis; it enhances the effects of apoptotic signals and causes single-agent-mechanism-based killing of cells in small-cell lung carcinoma and lymphoma lines.[citation needed]
In animal models, it improves survival, causes tumor regression and cures a high percentage of mice.[19] In preclinical studies utilizing patient xenografts, ABT-737 showed efficacy for treating lymphoma and other blood cancers.[20] Because of its unfavorable pharmacologic properties ABT-737 is not appropriate for clinical trials, while its orally bioavailable derivative navitoclax (ABT-263) has similar activity on small cell lung cancer (SCLC) cell lines and has entered clinical trials.[21] While clinical responses with navitoclax were promising, mechanistic dose-limiting thrombocytopoenia was observed in patients under treatment due to Bcl-xL inhibition in platelets.[22][23][24]
Venetoclax (ABT-199)
Due to dose-limiting thrombocytopoenia of navitoclax as a result of Bcl-xL inhibition, Abbott Laboratories successfully developed the highly selective inhibitor venetoclax (ABT-199), which inhibits Bcl-2, but not Bcl-xL or Bcl-w.[25] Clinical trials studied the effects of venetoclax, a BH3-mimetic drug designed to block the function of the Bcl-2 protein, on patients with chronic lymphocytic leukemia (CLL).[26][27] Good responses have been reported and thrombocytopoenia was no longer observed.[27][28] A phase 3 trial started in Dec 2015.[29] It was approved by the US FDA in April 2016 for CLL associated with 17-p deletion.[30] This is the first FDA approval of a protein-protein inhibitor of BCL-2.[30]
Interactions
Overview of signal transduction pathways involved in apoptosis.
Bcl-2 has been shown to interact with:
- BAK1,[31][32]
- BCAP31,[33]
- BCL2-like 1,[31][34]
- BCL2L11,[35][36][37]
- BECN1,[38]
- BID,[35][39]
- BMF,[40]
- BNIP2,[41][42]
- BNIP3,[42][43]
- BNIPL,[41][44]
- BAD[35][45]
- BAX,[31][46][47][48]
- BIK,[35][49]
- C-Raf,[50]
- CAPN2,[51]
- CASP8,[52][53]
- Cdk1,[54][55]
- HRK,[35][56]
- IRS1,[57]
- Myc,[58]
- NR4A1,[31]
- Noxa,[35][59]
- PPP2CA,[60]
- PSEN1,[61]
- RAD9A,[46]
- RRAS,[62]
- RTN4,[63]
- SMN1,[64]
- SOD1,[65] and
- TP53BP2.[66]
Human BCL-2 genes
BAK; BAK1; BAX; BCL2; BCL2A1; BCL2L1; BCL2L10; BCL2L13; BCL2L14; BCL2L2; BCL2L7P1; BOK; MCL1; LGALS7 (Galectin-7)
See also
- Apoptosis
- Apoptosome
- Bcl-2 homologous antagonist killer (BAK)
- Bcl-2-associated X protein (BAX)
- Bcl-xL
- BH3 interacting domain death agonist (BID)
- Caspases
- Cytochrome c
- Noxa
- Mcl-1
- Mitochondrion
- Microphthalmia-associated transcription factor
- Protein mimetic
- p53 upregulated modulator of apoptosis (PUMA)
References
- ^ "Diseases that are genetically associated with BCL2 view/edit references on wikidata".
- ^ "Drugs that physically interact with BCL2, apoptosis regulator view/edit references on wikidata".
- ^ "Human PubMed Reference:".
- ^ "Mouse PubMed Reference:".
- ^ Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM (Nov 1984). "Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation". Science. 226 (4678): 1097–9. Bibcode:1984Sci...226.1097T. doi:10.1126/science.6093263. PMID 6093263.
- ^ Cleary ML, Smith SD, Sklar J (Oct 1986). "Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation". Cell. 47 (1): 19–28. doi:10.1016/0092-8674(86)90362-4. PMID 2875799.
- ^ "OrthoMaM phylogenetic marker: Bcl-2 coding sequence".
- ^ "Human Bcl2, Isoform 1".
- ^ Hardwick JM, Soane L (2013). "Multiple functions of BCL-2 family proteins". Cold Spring Harb Perspect Biol. 5 (2): a008722. doi:10.1101/cshperspect.a008722. PMC 3552500. PMID 23378584.
- ^ Otake Y, Soundararajan S, Sengupta TK, Kio EA, Smith JC, Pineda-Roman M, Stuart RK, Spicer EK, Fernandes DJ (Apr 2007). "Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA". Blood. 109 (7): 3069–75. doi:10.1182/blood-2006-08-043257. PMC 1852223. PMID 17179226.
- ^ Vaux DL, Cory S, Adams JM (Sep 1988). "Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells". Nature. 335 (6189): 440–2. Bibcode:1988Natur.335..440V. doi:10.1038/335440a0. PMID 3262202.
- ^ a b c Li A, Ojogho O, Escher A (2006). "Saving death: apoptosis for intervention in transplantation and autoimmunity". Clinical & Developmental Immunology. 13 (2–4): 273–82. doi:10.1080/17402520600834704. PMC 2270759. PMID 17162368.
- ^ a b Glantz LA, Gilmore JH, Lieberman JA, Jarskog LF (Jan 2006). "Apoptotic mechanisms and the synaptic pathology of schizophrenia". Schizophrenia Research. 81 (1): 47–63. doi:10.1016/j.schres.2005.08.014. PMID 16226876.
- ^ Leong, Anthony S-Y; Cooper, Kumarason; Leong, F Joel W-M (2003). Manual of Diagnostic Cytology (2 ed.). Greenwich Medical Media, Ltd. pp. XX. ISBN 1-84110-100-1.
- ^ Dias N, Stein CA (Nov 2002). "Potential roles of antisense oligonucleotides in cancer therapy. The example of Bcl-2 antisense oligonucleotides". European Journal of Pharmaceutics and Biopharmaceutics. 54 (3): 263–9. doi:10.1016/S0939-6411(02)00060-7. PMID 12445555.
- ^ Mavromatis BH, Cheson BD (Jun 2004). "Novel therapies for chronic lymphocytic leukemia". Blood Reviews. 18 (2): 137–48. doi:10.1016/S0268-960X(03)00039-0. PMID 15010151.
- ^ "Genasense (oblimersen sodium) FDA Approval Status - Drugs.com". www.drugs.com. Retrieved 2016-02-11.
- ^ Vogler, Meike, et al. "Bcl-2 inhibitors: small molecules with a big impact on cancer therapy." Cell Death & Differentiation 16.3 (2008): 360–367.
- ^ Oltersdorf T; et al. (2005). "An inhibitor of Bcl-2 family proteins induces regression of solid tumours". Nature. 435 (7042): 677–681. Bibcode:2005Natur.435..677O. doi:10.1038/nature03579. PMID 15902208.
- ^ Hann CL; et al. (2008). "Therapeutic efficacy of ABT-737, a selective inhibitor of BCL-2, in small cell lung cancer". Cancer Research. 68 (7): 2321–2328. doi:10.1158/0008-5472.can-07-5031. PMC 3159963. PMID 18381439.
- ^ "Alterations in the Noxa/Mcl-1 axis determine sensitivity of small cell lung cancer to the BH3 mimetic ABT-737".
- ^ Gandhi, Leena; Camidge, D. Ross; Ribeiro de Oliveira, Moacyr; Bonomi, Philip; Gandara, David; Khaira, Divis; Hann, Christine L.; McKeegan, Evelyn M.; Litvinovich, Elizabeth (2011-03-01). "Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 29 (7): 909–916. doi:10.1200/JCO.2010.31.6208. ISSN 1527-7755. PMC 4668282. PMID 21282543.
- ^ Rudin, Charles M.; Hann, Christine L.; Garon, Edward B.; Ribeiro de Oliveira, Moacyr; Bonomi, Philip D.; Camidge, D. Ross; Chu, Quincy; Giaccone, Giuseppe; Khaira, Divis (2012-06-01). "Phase II study of single-agent navitoclax (ABT-263) and biomarker correlates in patients with relapsed small cell lung cancer". Clinical Cancer Research: an Official Journal of the American Association for Cancer Research. 18 (11): 3163–3169. doi:10.1158/1078-0432.CCR-11-3090. ISSN 1078-0432. PMC 3715059. PMID 22496272.
- ^ Kaefer, Aksana; Yang, Jianning; Noertersheuser, Peter; Mensing, Sven; Humerickhouse, Rod; Awni, Walid; Xiong, Hao (2014-09-01). "Mechanism-based pharmacokinetic/pharmacodynamic meta-analysis of navitoclax (ABT-263) induced thrombocytopenia". Cancer Chemotherapy and Pharmacology. 74 (3): 593–602. doi:10.1007/s00280-014-2530-9. ISSN 1432-0843. PMID 25053389.
- ^ Pan, Rongqing; Hogdal, Leah J.; Benito, Juliana M.; Bucci, Donna; Han, Lina; Borthakur, Gautam; Cortes, Jorge; DeAngelo, Daniel J.; Debose, Lakeisha (2014-03-01). "Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia". Cancer Discovery. 4 (3): 362–375. doi:10.1158/2159-8290.CD-13-0609. ISSN 2159-8290. PMC 3975047. PMID 24346116.
- ^ Liao, Grace (August 12, 2011). "ABT-199 BH-3 Mimetic Enters Phase Ia Trial For Chronic Lymphocytic Leukemia". Asian Scientist. Archived from the original on 18 July 2012. Retrieved February 2016.
- ^ a b Roberts, Andrew W.; Davids, Matthew S.; Pagel, John M.; Kahl, Brad S.; Puvvada, Soham D.; Gerecitano, John F.; Kipps, Thomas J.; Anderson, Mary Ann; Brown, Jennifer R. (2016-01-28). "Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia". The New England Journal of Medicine. 374 (4): 311–322. doi:10.1056/NEJMoa1513257. ISSN 1533-4406. PMID 26639348.
- ^ "'Miracle drug cured my cancer!': Amazing three-week recovery of Staffordshire sufferer". Stoke Sentinel.
- ^ Michael Smith (7 December 2015). "Hard-to-Treat CLL Yields to Investigational Drug".
- ^ a b [chronic lymphocytic leukemia (CLL) associated with 17-p deletion. FDA Approves AbbVie's BCL-2 Targeting Drug for CLL. April 2016]
- ^ a b c d Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, Dawson MI, Reed JC, Zhang XK (Feb 2004). "Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3". Cell. 116 (4): 527–40. doi:10.1016/s0092-8674(04)00162-x. PMID 14980220.
- ^ Enyedy IJ, Ling Y, Nacro K, Tomita Y, Wu X, Cao Y, Guo R, Li B, Zhu X, Huang Y, Long YQ, Roller PP, Yang D, Wang S (Dec 2001). "Discovery of small-molecule inhibitors of Bcl-2 through structure-based computer screening". Journal of Medicinal Chemistry. 44 (25): 4313–24. doi:10.1021/jm010016f. PMID 11728179.
- ^ Ng FW, Nguyen M, Kwan T, Branton PE, Nicholson DW, Cromlish JA, Shore GC (Oct 1997). "p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum". The Journal of Cell Biology. 139 (2): 327–38. doi:10.1083/jcb.139.2.327. PMC 2139787. PMID 9334338.
- ^ Zhang H, Nimmer P, Rosenberg SH, Ng SC, Joseph M (Aug 2002). "Development of a high-throughput fluorescence polarization assay for Bcl-x(L)". Analytical Biochemistry. 307 (1): 70–5. doi:10.1016/s0003-2697(02)00028-3. PMID 12137781.
- ^ a b c d e f Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC (Feb 2005). "Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function". Molecular Cell. 17 (3): 393–403. doi:10.1016/j.molcel.2004.12.030. PMID 15694340.
- ^ O'Connor L, Strasser A, O'Reilly LA, Hausmann G, Adams JM, Cory S, Huang DC (Jan 1998). "Bim: a novel member of the Bcl-2 family that promotes apoptosis". The EMBO Journal. 17 (2): 384–95. doi:10.1093/emboj/17.2.384. PMC 1170389. PMID 9430630.
- ^ Hsu SY, Lin P, Hsueh AJ (Sep 1998). "BOD (Bcl-2-related ovarian death gene) is an ovarian BH3 domain-containing proapoptotic Bcl-2 protein capable of dimerization with diverse antiapoptotic Bcl-2 members". Molecular Endocrinology. 12 (9): 1432–40. doi:10.1210/mend.12.9.0166. PMID 9731710.
- ^ Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B (Nov 1998). "Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein". Journal of Virology. 72 (11): 8586–96. PMC 110269. PMID 9765397.
- ^ Real PJ, Cao Y, Wang R, Nikolovska-Coleska Z, Sanz-Ortiz J, Wang S, Fernandez-Luna JL (Nov 2004). "Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2". Cancer Research. 64 (21): 7947–53. doi:10.1158/0008-5472.CAN-04-0945. PMID 15520201.
- ^ Puthalakath H, Villunger A, O'Reilly LA, Beaumont JG, Coultas L, Cheney RE, Huang DC, Strasser A (Sep 2001). "Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis". Science. 293 (5536): 1829–32. Bibcode:2001Sci...293.1829P. doi:10.1126/science.1062257. PMID 11546872.
- ^ a b Qin W, Hu J, Guo M, Xu J, Li J, Yao G, Zhou X, Jiang H, Zhang P, Shen L, Wan D, Gu J (Aug 2003). "BNIPL-2, a novel homologue of BNIP-2, interacts with Bcl-2 and Cdc42GAP in apoptosis". Biochemical and Biophysical Research Communications. 308 (2): 379–85. doi:10.1016/s0006-291x(03)01387-1. PMID 12901880.
- ^ a b Boyd JM, Malstrom S, Subramanian T, Venkatesh LK, Schaeper U, Elangovan B, D'Sa-Eipper C, Chinnadurai G (Oct 1994). "Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins". Cell. 79 (2): 341–51. doi:10.1016/0092-8674(94)90202-X. PMID 7954800.
- ^ Ray R, Chen G, Vande Velde C, Cizeau J, Park JH, Reed JC, Gietz RD, Greenberg AH (Jan 2000). "BNIP3 heterodimerizes with Bcl-2/Bcl-X(L) and induces cell death independent of a Bcl-2 homology 3 (BH3) domain at both mitochondrial and nonmitochondrial sites". The Journal of Biological Chemistry. 275 (2): 1439–48. doi:10.1074/jbc.275.2.1439. PMID 10625696.
- ^ Yasuda M, Han JW, Dionne CA, Boyd JM, Chinnadurai G (Feb 1999). "BNIP3alpha: a human homolog of mitochondrial proapoptotic protein BNIP3". Cancer Research. 59 (3): 533–7. PMID 9973195.
- ^ Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (Jan 1995). "Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death". Cell. 80 (2): 285–91. doi:10.1016/0092-8674(95)90411-5. PMID 7834748.
- ^ a b Komatsu K, Miyashita T, Hang H, Hopkins KM, Zheng W, Cuddeback S, Yamada M, Lieberman HB, Wang HG (Jan 2000). "Human homologue of S. pombe Rad9 interacts with BCL-2/BCL-xL and promotes apoptosis". Nature Cell Biology. 2 (1): 1–6. doi:10.1038/71316. PMID 10620799.
- ^ Hoetelmans RW (Jun 2004). "Nuclear partners of Bcl-2: Bax and PML". DNA and Cell Biology. 23 (6): 351–4. doi:10.1089/104454904323145236. PMID 15231068.
- ^ Oltvai ZN, Milliman CL, Korsmeyer SJ (Aug 1993). "Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death". Cell. 74 (4): 609–19. doi:10.1016/0092-8674(93)90509-O. PMID 8358790.
- ^ Gillissen B, Essmann F, Graupner V, Stärck L, Radetzki S, Dörken B, Schulze-Osthoff K, Daniel PT (Jul 2003). "Induction of cell death by the BH3-only Bcl-2 homolog Nbk/Bik is mediated by an entirely Bax-dependent mitochondrial pathway". The EMBO Journal. 22 (14): 3580–90. doi:10.1093/emboj/cdg343. PMC 165613. PMID 12853473.
- ^ Wang HG, Rapp UR, Reed JC (Nov 1996). "Bcl-2 targets the protein kinase Raf-1 to mitochondria". Cell. 87 (4): 629–38. doi:10.1016/s0092-8674(00)81383-5. PMID 8929532.
- ^ Gil-Parrado S, Fernández-Montalván A, Assfalg-Machleidt I, Popp O, Bestvater F, Holloschi A, Knoch TA, Auerswald EA, Welsh K, Reed JC, Fritz H, Fuentes-Prior P, Spiess E, Salvesen GS, Machleidt W (Jul 2002). "Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members". The Journal of Biological Chemistry. 277 (30): 27217–26. doi:10.1074/jbc.M202945200. PMID 12000759.
- ^ Poulaki V, Mitsiades N, Romero ME, Tsokos M (Jun 2001). "Fas-mediated apoptosis in neuroblastoma requires mitochondrial activation and is inhibited by FLICE inhibitor protein and Bcl-2". Cancer Research. 61 (12): 4864–72. PMID 11406564.
- ^ Guo Y, Srinivasula SM, Druilhe A, Fernandes-Alnemri T, Alnemri ES (Apr 2002). "Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria". The Journal of Biological Chemistry. 277 (16): 13430–7. doi:10.1074/jbc.M108029200. PMID 11832478.
- ^ Pathan N, Aime-Sempe C, Kitada S, Basu A, Haldar S, Reed JC (2001). "Microtubule-targeting drugs induce bcl-2 phosphorylation and association with Pin1". Neoplasia. 3 (6): 550–9. doi:10.1038/sj.neo.7900213. PMC 1506558. PMID 11774038.
- ^ Pathan N, Aime-Sempe C, Kitada S, Haldar S, Reed JC (2001). "Microtubule-targeting drugs induce Bcl-2 phosphorylation and association with Pin1". Neoplasia. 3 (1): 70–9. doi:10.1038/sj.neo.7900131. PMC 1505024. PMID 11326318.
- ^ Inohara N, Ding L, Chen S, Núñez G (Apr 1997). "harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L)". The EMBO Journal. 16 (7): 1686–94. doi:10.1093/emboj/16.7.1686. PMC 1169772. PMID 9130713.
- ^ Ueno H, Kondo E, Yamamoto-Honda R, Tobe K, Nakamoto T, Sasaki K, Mitani K, Furusaka A, Tanaka T, Tsujimoto Y, Kadowaki T, Hirai H (Feb 2000). "Association of insulin receptor substrate proteins with Bcl-2 and their effects on its phosphorylation and antiapoptotic function". Molecular Biology of the Cell. 11 (2): 735–46. doi:10.1091/mbc.11.2.735. PMC 14806. PMID 10679027.
- ^ Jin Z, Gao F, Flagg T, Deng X (Sep 2004). "Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation". The Journal of Biological Chemistry. 279 (38): 40209–19. doi:10.1074/jbc.M404056200. PMID 15210690.
- ^ Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (May 2000). "Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis". Science. 288 (5468): 1053–8. Bibcode:2000Sci...288.1053O. doi:10.1126/science.288.5468.1053. PMID 10807576.
- ^ Deng X, Ito T, Carr B, Mumby M, May WS (Dec 1998). "Reversible phosphorylation of Bcl2 following interleukin 3 or bryostatin 1 is mediated by direct interaction with protein phosphatase 2A". The Journal of Biological Chemistry. 273 (51): 34157–63. doi:10.1074/jbc.273.51.34157. PMID 9852076.
- ^ Alberici A, Moratto D, Benussi L, Gasparini L, Ghidoni R, Gatta LB, Finazzi D, Frisoni GB, Trabucchi M, Growdon JH, Nitsch RM, Binetti G (Oct 1999). "Presenilin 1 protein directly interacts with Bcl-2". The Journal of Biological Chemistry. 274 (43): 30764–9. doi:10.1074/jbc.274.43.30764. PMID 10521466.
- ^ Fernandez-Sarabia MJ, Bischoff JR (Nov 1993). "Bcl-2 associates with the ras-related protein R-ras p23". Nature. 366 (6452): 274–5. Bibcode:1993Natur.366..274F. doi:10.1038/366274a0. PMID 8232588.
- ^ Tagami S, Eguchi Y, Kinoshita M, Takeda M, Tsujimoto Y (Nov 2000). "A novel protein, RTN-XS, interacts with both Bcl-XL and Bcl-2 on endoplasmic reticulum and reduces their anti-apoptotic activity". Oncogene. 19 (50): 5736–46. doi:10.1038/sj.onc.1203948. PMID 11126360.
- ^ Iwahashi H, Eguchi Y, Yasuhara N, Hanafusa T, Matsuzawa Y, Tsujimoto Y (Nov 1997). "Synergistic anti-apoptotic activity between Bcl-2 and SMN implicated in spinal muscular atrophy". Nature. 390 (6658): 413–7. Bibcode:1997Natur.390..413I. doi:10.1038/37144. PMID 9389483.
- ^ Pasinelli P, Belford ME, Lennon N, Bacskai BJ, Hyman BT, Trotti D, Brown RH (Jul 2004). "Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria". Neuron. 43 (1): 19–30. doi:10.1016/j.neuron.2004.06.021. PMID 15233914.
- ^ Naumovski L, Cleary ML (Jul 1996). "The p53-binding protein 53BP2 also interacts with Bc12 and impedes cell cycle progression at G2/M". Molecular and Cellular Biology. 16 (7): 3884–92. PMC 231385. PMID 8668206.
External links
- The Bcl-2 Family Database
- The Bcl-2 Family at celldeath.de
- Bcl-2 publications sorted by impact at caspases.org
- bcl-2 Genes at the US National Library of Medicine Medical Subject Headings (MeSH)
- c-bcl-2 Proteins at the US National Library of Medicine Medical Subject Headings (MeSH)
- Human BCL2 genome location and BCL2 gene details page in the UCSC Genome Browser.
Neoplasm: Tumor suppressor genes/proteins and Oncogenes/Proto-oncogenes
|
|
Ligand |
|
|
Receptor |
Wnt signaling pathway |
|
|
Hedgehog signaling pathway |
|
|
TGF beta signaling pathway |
|
|
Receptor tyrosine kinase |
- ONCO: ErbB/c-ErbB
- c-Met
- c-Ret
|
|
JAK-STAT signaling pathway |
|
|
|
Intracellular signaling P+Ps |
Wnt signaling pathway |
- ONCO: Beta-catenin
- TSP: APC
|
|
TGF beta signaling pathway |
|
|
Akt/PKB signaling pathway |
|
|
Hippo signaling pathway |
- TSP: Neurofibromin 2/Merlin
|
|
MAPK/ERK pathway |
- TSP: Neurofibromin 1
- ONCO: c-Ras
- HRAS
- c-Raf
|
|
Other/unknown |
|
|
|
Nucleus |
Cell cycle |
- TSP: p53
- pRb
- WT1
- p16/p14arf
- ONCO: CDK4
- Cyclin D
- Cyclin E
|
|
DNA repair/Fanconi |
|
|
Ubiquitin ligase |
|
|
Transcription factor |
- TSP: KLF6
- ONCO: AP-1
- c-Myc
|
|
|
Mitochondrion |
- Apoptosis inhibitor: SDHB
- SDHD
|
|
Other/ungrouped |
|
Apoptosis signaling pathway
|
|
Fas path |
Ligand
|
|
|
Receptor
|
|
|
Intracellular
|
- Death-inducing signaling complex
- Cytochrome c
- Caspase 9
- Caspase 3
- Pro-apoptotic:
- BAX
- BAK1/Bcl-2 homologous antagonist killer
- Bcl-2-associated death promoter
- Anti-apoptotic:
- Bcl-2
- Bcl-xL
|
|
|
TNF path |
Ligand
|
- Tumor necrosis factor alpha
|
|
Receptor
|
- Tumor necrosis factor receptor 1
- Tumor necrosis factor receptor 2
|
|
Intracellular
|
- FADD
- Caspase 8
- Caspase 3
- BID
- TRAF2
- ASK-1
- MEKK1
- IKK
- IκBα
- MKK7
- JNK
- NF-κB
|
|
|
Other |
Intracellular
|
- IAPs
- XIAP
- NAIP
- Survivin
- c-IAP-1
- c-IAP-2
- Apoptosis-inducing factor
|
|