出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/08/26 15:22:58」(JST)
半導体(はんどうたい、英: semiconductor)[1]とは、電気電導性の良い金属などの導体(良導体)と電気抵抗率の大きい絶縁体の中間的な抵抗率をもつ物質を言う[2]。代表的なものとしては元素半導体のシリコン(Si)などがある。
電子工学で使用されるICのような半導体素子はこの半導体の性質を利用している[3]。
金属などの導体とゴムなどの絶縁体の中間の抵抗率を持つ物質を半導体(semiconductor)と呼ぶ。半導体は、熱や光、磁場、電圧、電流、放射線などの影響でその電導性が顕著に変わるという特徴を持つ[4]が、これら特徴は固体のバンド理論によって説明される。
なお、バンド理論を用いれば、半導体とは、価電子帯を埋める電子の状態は完全に詰まっている(充満帯である)ものの、禁制帯を挟んで、伝導帯を埋める電子の状態は存在しない(空帯である)物質として定義される[5]。
一般的に、抵抗は電流と電圧に関して直線的な関係を満たす、すなわちオームの法則が成り立つことからオーム性抵抗(ohmic resistance)と呼ばれる[6]。一方、電気回路においては、非オーム性抵抗素子はオーム性抵抗素子に劣らず重要である。
半導体が重要視される性質の一つは、半導体と金属、または半導体同士を適当に接触させることでさまざまな非オーム性抵抗が得られることにある[7]。
具体的には、p型半導体とn型半導体をpn接合したダイオードや、n型半導体をp型半導体で挟んだ、もしくはp型半導体をn型半導体で挟んだトランジスタなどがある。太陽電池もpn接合を用いている。
半導体では通常、温度が上がると電気伝導性が増す。
室温では、キャリアが不純物原子から受ける束縛を離れて結晶中を動ける状態にある。言い方を変えれば、ドナーとアクセプターの原子は多くがイオン化しているが、温度が低下すると熱励起も弱くなり、不純物原子のクーロン引力による束縛の影響が相対的に大きくなる。キャリアが束縛を離れている温度の領域を飽和領域、あるいは出払い領域といい、キャリアが束縛を受ける温度領域を不純物領域という。また、温度を上昇させると価電子までもが熱励起され、キャリアの供給源となり、この温度領域を真性領域と呼ぶ。半導体素子として利用する場合は飽和領域が利用される。
逆バイアスされたpn接合などにおいて温度が上がりすぎると、キャリアの増加で電流が増加し、その抵抗発熱でさらに温度が上がる熱暴走が発生する。
半導体となる材料には以下のものがある。
不純物や格子欠陥を全く含まない半導体を真性半導体(intrinsic semiconductor)と呼ぶ。真性半導体は、そのフェルミ準位は禁制帯の中央に位置し、全温度領域においてキャリアは価電子帯のエネルギーレベルにある電子の励起によってのみ供給されることから、電子回路に用いるような半導体素子としては使い難い。
半導体素子として用いることができるような半導体は、真性半導体にドーパントと呼ばれる微量の添加物を混ぜて不純物半導体とする(ドープする)ことで作成する。このドープによって、半導体のキャリアである電子または正孔の密度が変化することとなるが、伝導現象を支配するキャリアとして電子が優勢である半導体をn型半導体(negative semiconductor)、逆に正孔が優勢なものをp型半導体(positive semiconductor)と呼ぶ[8]。
n型半導体(negative semiconductor)とは、電圧がかけられると伝導電子や自由電子、ほとんど自由な電子とも呼ばれる電子の移動によって電荷が運ばれる半導体である。価数の多い元素をドーピングすることで作られる。例えばシリコンやゲルマニウム(4価の元素)の結晶に、ヒ素などの5価の原子を混ぜることでn型となる。
不純物の導入によって生成されたキャリアは、導入された不純物原子から受けるクーロン引力により束縛される。ただしその束縛は弱く、ゲルマニウムのn型半導体では、電子束縛エネルギー = -0.01 eV、ボーア半径 = 4.2 nm 程度であるため、結晶内の原子間距離 0.25 nm、室温での熱励起は約 0.025 eV 程度では単独原子の束縛を離れて結晶の原子同士間を自由に動き、これらの原子は互いの電子を共有する状態となる。 バンド構造で言えば通常、ドーパント原子は禁制帯の上端付近にドナー準位を形成し、そこから熱エネルギーにて伝導帯へ励起される。フェルミ準位は禁制帯中のドナー準位に近い位置になる。
電圧がかけられると正孔の移動によって電荷が運ばれる半導体である。価数の少ない元素をドーピングすることで作られる。例えばシリコン(4価)の結晶にホウ素などの3価の原子を混ぜることでp型となる。
電子が伝導帯側に遷移して価電子帯側の電子が不足することで生じる電子軌道上の空隙が正孔となる。結晶の原子同士間の自由電子が隣の正孔に移動することで正孔の位置は自由に移動でき、 電圧に応じて電子とは逆方向へ流れる。移動度は電子に比べて劣る。バンド構造で言えば、ドーパント原子は禁制帯の下端付近にアクセプター準位と呼ばれる空の準位を形成し、アクセプター準位へ価電子帯から熱エネルギーによって価電子が励起されることで、価電子帯に正孔が生じる。フェルミ準位は禁制帯中のアクセプター準位に近い位置になる。
であり、p型半導体であれば、
|
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
リンク元 | 「百万分率」 |
拡張検索 | 「真性半導体」 |
関連記事 | 「体」 |
テンプレート:Otheruses テンプレート:小文字 ppm(パーツ・パー・ミリオン)は、100万分のいくらであるかという割合を示す単位。主に濃度を表すために用いられるが、不良品発生率などの確率を表すこともある。「parts per million」の頭文字をとったもので、100万分の1の意。百万分率とも。
同様の単位に、ppc(パーセント、parts per cent、100分の1、百分率)、ppb(パーツ・パー・ビリオン、parts per billion、10億分の1、十億分率)、ppt(パーツ・パー・トリリオン、parts per trillion、1兆分の1、一兆分率)などがある。
二酸化窒素などの大気汚染物質をはじめとする公害分野や、食品添加物などの濃度、岩石中の微量元素の組成、半導体中の不純物量を示す目的などで良く用いられる。
気体中の気体については体積比を用い、液体・固体中の液体・固体では重量比を用いるのが一般的である。体積比か重量比かあいまいになる場合は使用しない方がよい。なお、水溶液中の濃度について、「1kg = 1l」と近似し、「mg/l = ppm」として、水質汚濁物質濃度等の単位で用いられることがあるが、公的基準値などでは使用されない。
長さを表す例として、線膨張係数の表記にも使用される。 (例)線膨張係数が8.8ppm/℃と表記されている場合、これは、8.8μm/℃/m(メートル)のことである。
ちなみに、一般の水の遊離残留塩素濃度は約0.4ppm、浄水器を使った場合は約0.1ppmである。
また、原子(分子)の数量の比率か重量の比率かを区別するためにppma(parts per million atomic)もしくはppmw(parts per million weight)の表記が用いられることもある<ref name="NREL_mgSi">シリコン原料の精製に関する論文の例(NREL/SR-520-30716)</ref>。
<references/>
.