Transesophageal echocardiography |
Intervention |
MeSH |
D017548 |
OPS-301 code |
3-052 |
[edit on Wikidata]
|
Transesophageal echocardiography diagram
A transesophageal echocardiogram, or TEE (TOE in the United Kingdom, reflecting the spelling transoesophageal), is an alternative way to perform an echocardiogram. A specialized probe containing an ultrasound transducer at its tip is passed into the patient's esophagus.[1] This allows image and Doppler evaluation which can be recorded.
It has several advantages and some disadvantages compared to a transthoracic echocardiogram (TTE).
Contents
- 1 Contraindications
- 2 Advantages
- 3 Disadvantages
- 4 Process
- 5 Clinical uses
- 6 References
- 7 External links
Contraindications
Specialty medicine professional organizations recommend against using transesophageal echocardiography to detect cardiac sources of embolization after a patient's health care provider has identified a source of embolization and if that person would not change a patient's management as a result of getting more information.[2] Such organizations further recommend that doctors and patients should avoid seeking transesophageal echocardiography only for the sake of protocol-driven testing and to agree to the test only if it is right for the individual patient.[2]
Advantages
The advantage of TEE over TTE is usually clearer images, especially of structures that are difficult to view transthoracically (through the chest wall). The explanation for this is that the heart rests directly upon the esophagus leaving only millimeters that the ultrasound beam has to travel. This reduces the attenuation (weakening) of the ultrasound signal, generating a stronger return signal, ultimately enhancing image and Doppler quality. Comparatively, transthoracic ultrasound must first traverse skin, fat, ribs and lungs before reflecting off the heart and back to the probe before an image can be created. All these structures, along with the increased distance the beam must travel, weaken the ultrasound signal thus degrading the image and Doppler quality.
In adults, several structures can be evaluated and imaged better with the TEE, including the aorta, pulmonary artery, valves of the heart, both atria, atrial septum, left atrial appendage, and coronary arteries. TEE has a very high sensitivity for locating a blood clot inside the left atrium.[3]
Disadvantages
- TEE requires a fasting patient. The patient must follow the ASA NPO guidelines (i.e. usually not eat anything for eight hours and not drink anything for two hours prior to the procedure.)
- Requires a team of medical personnel
- Takes longer to perform than TTE
- May be uncomfortable for the patient
- May require sedation or general anesthesia
- There are some risks associated with the procedure (esophageal perforation[4]—1 in 10,000,[citation needed] and adverse reactions to the medication.)
Process
Before inserting the probe, mild to moderate sedation is induced in the patient to ease the discomfort and to decrease the gag reflex, thus making the ultrasound probe easier to pass into the esophagus. Mild or moderate sedation can be induced with medications such as midazolam (a benzodiazepine with sedating, amnesiac qualities), fentanyl (an opioid), or propofol (a sedative/general anesthetic, depending on dosage) . Usually a local anesthetic spray is used for the back of the throat, such a xylocaine and/or a jelly/lubricant anesthetic for the esophagus. Children are anesthetized. Adults are sometimes anesthetized as well. Unlike the TTE, the TEE is considered an invasive procedure and is thus performed by physicians in the U.S., not sonographers.
Clinical uses
In addition to use by cardiologists in outpatient and inpatient settings, TEE can be performed by a cardiac anesthesiologist or CRNA to evaluate, diagnose, and treat patients in the perioperative period. Most commonly used during open heart procedures, if the patient's status warrants it, TEE can be used in the setting of any operation. TEE is very useful during many cardiac surgical procedures (e.g., mitral valve repair). It is actually an essential monitoring tool during this procedure. It helps to detect and quantify the disease preoperatively as well as to assess the results of surgery immediately after the procedure. If the repair is found to be inadequate, showing significant residual regurgitation, the surgeon can decide whether to go back to CPB to try to correct the defect. Aortic dissections are another important condition where TEE is very helpful. TEE can also help the surgeon during the insertion of a catheter for retrograde cardioplegia.
References
- ^ Transesophageal Echocardiography at the US National Library of Medicine Medical Subject Headings (MeSH)
- ^ a b American Society of Echocardiography, "Five Things Physicians and Patients Should Question", Choosing Wisely: an initiative of the ABIM Foundation, American Society of Echocardiography, retrieved February 27, 2013 , which cites
- Douglas, P. S.; Garcia, M. J.; Haines, D. E.; Lai, W. W.; Manning, W. J.; Patel, A. R.; Picard, M. H.; Polk, D. M.; Ragosta, M.; Ward, R. P.; Douglas, R. B.; Weiner, R. B.; Society for Cardiovascular Angiography Interventions; Society of Critical Care Medicine; American Society of Echocardiography; American Society of Nuclear Cardiology; Heart Failure Society of America; Society for Cardiovascular Magnetic Resonance; Society of Cardiovascular Computed Tomography; American Heart Association; Heart Rhythm Society (2011). "ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 Appropriate Use Criteria for Echocardiography". Journal of the American College of Cardiology. 57 (9): 1126–1166. doi:10.1016/j.jacc.2010.11.002. PMID 21349406.
- ^ http://www.heartsite.com
- ^ Ramadan AS, Stefanidis C, Ngatchou W, LeMoine O, De Canniere D, Jansens JL (September 2007). "Esophageal stents for iatrogenic esophageal perforations during cardiac surgery". Ann. Thorac. Surg. 84 (3): 1034–6. doi:10.1016/j.athoracsur.2007.04.047. PMID 17720433.
External links
|
Wikimedia Commons has media related to Transesophageal echocardiography. |
- VIRTUAL TEE - online interactive learning resource
- TEE online simulator, interactive
Medical imaging (ICD-9-CM V3 87–88, ICD-10-PCS B, CPT 70010–79999)
|
|
X-ray/
medical radiography/
Industrial radiography |
2D |
Medical: |
- Pneumoencephalography
- Dental radiography
- Sialography
- Myelography
- CXR
- AXR
- KUB
- DXA/DXR
- Upper gastrointestinal series/Small-bowel follow-through/Lower gastrointestinal series
- Cholangiography/Cholecystography
- Mammography
- Pyelogram
- Cystography
- Arthrogram
- Hysterosalpingography
- Skeletal survey
- Angiography
- Angiocardiography
- Aortography
- Venography
- Lymphogram
|
|
Industrial: |
|
|
|
3D / XCT |
Medical: |
- CT pulmonary angiogram
- Computed tomography of the heart
- Computed tomography of the abdomen and pelvis
- CT angiography
- Computed tomography of the head
- Quantitative computed tomography
- Spiral computed tomography
- High resolution CT
- Whole body imaging
- X-ray microtomography
- Electron beam tomography
|
|
Industrial: |
- Industrial computed tomography
|
|
|
Other |
- Fluoroscopy
- X-ray motion analysis
|
|
|
MRI |
- MRI of the brain
- MR neurography
- Cardiac MRI/Cardiac MRI perfusion
- MR angiography
- MR cholangiopancreatography
- Breast MRI
- Functional MRI
- Diffusion MRI
- Synthetic MRI
|
|
Ultrasound |
- Echocardiography
- Doppler echocardiography
- Intravascular
- Gynecologic
- Obstetric
- Echoencephalography
- Transcranial Doppler
- Abdominal ultrasonography
- Transrectal
- Breast ultrasound
- Transscrotal ultrasound
- Carotid ultrasonography
- Contrast-enhanced
- 3D ultrasound
- Endoscopic ultrasound
- Emergency ultrasound
- FAST
- Pre-hospital ultrasound
- Duplex
|
|
Radionuclide |
2D / scintigraphy |
- Cholescintigraphy
- Scintimammography
- Ventilation/perfusion scan
- Radionuclide ventriculography
- Radionuclide angiography
- Radioisotope renography
- Sestamibi parathyroid scintigraphy
- Radioactive iodine uptake test
- Bone scintigraphy
- Immunoscintigraphy
|
|
Full body: |
- Octreotide scan
- Gallium 67 scan
- Indium-111 WBC scan
|
|
|
3D / ECT |
- SPECT
- gamma ray: Myocardial perfusion imaging
|
|
PET (positron): |
- Brain PET
- Cardiac PET
- PET mammography
- PET-CT
|
|
|
|
Optical laser |
- Optical tomography
- Optical coherence tomography
- Confocal microscopy
- Endomicroscopy
|
|
Thermography |
- non-contact thermography
- contact thermography
- dynamic angiothermography
|
Surgery and other procedures involving the heart (ICD-9-CM V3 35–37+89.4+99.6, ICD-10-PCS 02)
|
|
Surgery and IC |
Heart valves
and septa
|
- Valve repair
- Valvulotomy
- Mitral valve repair
- Valvuloplasty
- Valve replacement
- Aortic valve repair
- Aortic valve replacement
- Ross procedure
- Percutaneous aortic valve replacement
- Mitral valve replacement
- production of septal defect in heart
- enlargement of existing septal defect
- Atrial septostomy
- Balloon septostomy
- creation of septal defect in heart
- Blalock–Hanlon procedure
- shunt from heart chamber to blood vessel
- atrium to pulmonary artery
- Fontan procedure
- left ventricle to aorta
- Rastelli procedure
- right ventricle to pulmonary artery
- Sano shunt
- compound procedures
- for transposition of great vessels
- Jatene procedure
- Mustard procedure
- for univentricular defect
- Norwood procedure
- Kawashima procedure
- shunt from blood vessel to blood vessel
- systemic circulation to pulmonary artery shunt
- Blalock–Taussig shunt
- SVC to the right PA
- Glenn procedure
|
|
Cardiac vessels
|
- CHD
- Angioplasty
- Bypass/Coronary artery bypass
- MIDCAB
- Off-pump CAB
- TECAB
- Coronary stent
- Bare-metal stent
- Drug-eluting stent
- Bentall procedure
- Valve-sparing aortic root replacement
|
|
Other
|
- Pericardium
- Pericardiocentesis
- Pericardial window
- Pericardiectomy
- Myocardium
- Cardiomyoplasty
- Dor procedure
- Septal myectomy
- Ventricular reduction
- Alcohol septal ablation
- Conduction system
- Maze procedure
- Cox maze and minimaze
- Catheter ablation
- Cryoablation
- Radiofrequency ablation
- Pacemaker insertion
- Left atrial appendage occlusion
- Cardiotomy
- Heart transplantation
|
|
|
Diagnostic
tests and
procedures |
- Electrophysiology
- Electrocardiography
- Vectorcardiography
- Holter monitor
- Implantable loop recorder
- Cardiac stress test
- Bruce protocol
- Electrophysiology study
- Cardiac imaging
- Angiocardiography
- Echocardiography
- TTE
- TEE
- Myocardial perfusion imaging
- Cardiovascular MRI
- Ventriculography
- Radionuclide ventriculography
- Cardiac catheterization/Coronary catheterization
- Cardiac CT
- Cardiac PET
- sound
- Phonocardiogram
|
|
Function tests |
- Impedance cardiography
- Ballistocardiography
- Cardiotocography
|
|
Pacing |
- Cardioversion
- Transcutaneous pacing
|