CYP11A1 |
|
Available structures |
PDB |
Ortholog search: PDBe RCSB |
List of PDB id codes |
3NA1, 3N9Y, 3N9Z, 3NA0
|
|
|
Identifiers |
Aliases |
CYP11A1, CYP11A, CYPXIA1, P450SCC, cytochrome P450 family 11 subfamily A member 1 |
External IDs |
OMIM: 118485 MGI: 88582 HomoloGene: 37347 GeneCards: 1583 |
|
Targeted by Drug |
mitotane[1] |
Gene ontology |
Molecular function |
• iron ion binding
• metal ion binding
• monooxygenase activity
• heme binding
• oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen
• oxidoreductase activity
• oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, NAD(P)H as one donor, and incorporation of one atom of oxygen
• cholesterol monooxygenase (side-chain-cleaving) activity
|
Cellular component |
• membrane
• mitochondrial membrane
• mitochondrial matrix
• mitochondrion
• mitochondrial inner membrane
|
Biological process |
• vitamin D metabolic process
• C21-steroid hormone metabolic process
• lipid metabolic process
• secondary metabolite biosynthetic process
• cholesterol metabolic process
• cortisol metabolic process
• C21-steroid hormone biosynthetic process
• glucocorticoid biosynthetic process
• cellular response to peptide hormone stimulus
• sterol metabolic process
• oxidation-reduction process
• steroid biosynthetic process
• steroid metabolic process
|
Sources:Amigo / QuickGO |
|
RNA expression pattern |
|
More reference expression data |
Orthologs |
Species |
Human |
Mouse |
Entrez |
|
|
Ensembl |
|
|
UniProt |
|
|
RefSeq (mRNA) |
|
|
RefSeq (protein) |
|
NP_000772.2
NP_001093243.1
|
|
|
Location (UCSC) |
Chr 15: 74.34 – 74.37 Mb |
Chr 9: 58.01 – 58.03 Mb |
PubMed search |
[2] |
[3] |
Wikidata |
View/Edit Human |
View/Edit Mouse |
Cholesterol side-chain cleavage enzyme is commonly referred to as P450scc, where "scc" is an acronym for side-chain cleavage. P450scc is a mitochondrial enzyme that catalyzes conversion of cholesterol to pregnenolone. This is the first reaction in the process of steroidogenesis in all mammalian tissues that specialize in the production of various steroid hormones.[4]
cholesterol + 3 NADPH + 3 H
+ + 3 O
2 ⇄ pregnenolone + 4-methylpentanal + 3 NADP
+ + 3 H
2O
P450scc is a member of the cytochrome P450 superfamily of enzymes (family 11, subfamily A, polypeptide 1). The gene name is CYP11A1.[5]
Contents
- 1 Nomenclature
- 2 Tissue and intracellular localization
- 3 Mechanism of action
- 4 Regulation
- 5 Pathology
- 6 See also
- 7 References
- 8 Further reading
- 9 Steroid hormone synthesis
- 10 Additional images
- 11 External links
Nomenclature
cholesterol monooxygenase (side-chain-cleaving) |
Identifiers |
EC number |
1.14.15.6 |
CAS number |
37292-81-2 |
Databases |
IntEnz |
IntEnz view |
BRENDA |
BRENDA entry |
ExPASy |
NiceZyme view |
KEGG |
KEGG entry |
MetaCyc |
metabolic pathway |
PRIAM |
profile |
PDB structures |
RCSB PDB PDBe PDBsum |
Gene Ontology |
AmiGO / EGO |
Search |
PMC |
articles |
PubMed |
articles |
NCBI |
proteins |
|
The systematic name of this enzyme class is cholesterol,reduced-adrenal-ferredoxin:oxygen oxidoreductase (side-chain-cleaving). Other names include:
- C27-side-chain cleavage enzyme
- cholesterol 20-22-desmolase
- cholesterol C20-22 desmolase
- cholesterol desmolase
- cholesterol side-chain cleavage enzyme
- cholesterol side-chain-cleaving enzyme
- cytochrome P-450scc
- desmolase, steroid 20-22
- enzymes, cholesterol side-chain-cleaving
- steroid 20-22 desmolase
- steroid 20-22-lyase.
|
Tissue and intracellular localization
The highest level of the cholesterol side-chain cleavage system is found in the adrenal cortex and the corpus luteum.[4] The system is also expressed at high levels in steroidogenic theca cells in the ovary, and Leydig cells in the testis.[4] During pregnancy, the placenta also expresses significant levels of this enzyme system.[6] P450scc is also present at much lower levels in several other tissue types, including the brain.[7] In the adrenal cortex, the concentration of adrenodoxin is similar to that of P450scc, but adrenodoxin reductase is expressed at lower levels.[8]
Immunofluorescence studies using specific antibodies against P450scc system enzymes have demonstrated that proteins are located exclusively within the mitochondria.[9][10] P450scc is associated with the inner mitochondrial membrane, facing the interior (matrix).[11] Adrenodoxin and adrenodoxin reductase are soluble peripheral membrane proteins located inside the mitochondrial matrix that appear to associate with each other primarily through electrostatic interactions.[12]
Mechanism of action
P450scc catalyzes the conversion of cholesterol to pregnenolone in three monooxygenase reactions. These involve 2 hydroxylations of the cholesterol side-chain, which generate, first, 22R-hydroxycholesterol and then 20alpha,22R-dihydroxycholesterol. The final step cleaves the bond between carbons 20 and 22, resulting in the production of pregnenolone and isocaproic aldehyde.
Each monooxygenase step requires 2 electrons (reducing equivalents). The initial source of the electrons is NADPH.[13] The electrons are transferred from NADPH to P450scc via two electron transfer proteins: adrenodoxin reductase[14] and adrenodoxin.[15][16] All three proteins together constitute the cholesterol side-chain cleavage complex.
The involvement of three proteins in cholesterol side-chain cleavage reaction raises the question of whether the three proteins function as a ternary complex as reductase:adrenodoxin:P450. Both spectroscopic studies of adrenodoxin binding to P450scc and kinetic studies in the presence of varying concentrations of adrenodoxin reductase demonstrated that the reductase competes with P450scc for binding to adrenodoxin. These results demonstrated that the formation of a functional ternary complex is not possible.[15] From these studies, it was concluded that the binding sites of adrenodoxin to its reductase and to P450 are overlapping and, as a consequence, adrenodoxin functions as a mobile electron shuttle between reductase and P450.[15] These conclusions have been confirmed by structural analysis of adrenodoxin and P450 complex.[17]
The process of electron transfer from NADPH to P450scc is not tightly coupled; that is, during electron transfer from adrenodoxin reductase via adrenodoxin to P450scc, a certain portion of the electrons leak outside of the chain and react with O2, generating superoxide radicals.[18] Steroidogenic cells include a diverse array of antioxidant systems to cope with the radicals generated by the steroidogenic enzymes.[19]
Regulation
In each steroidogenic cell, the expression of the P450scc system proteins is regulated by the trophic hormonal system specific for the cell type.[4] In adrenal cortex cells from zona fasciculata, the expression of the mRNAs encoding all three P450scc proteins is induced by corticotropin (ACTH).[10][20] The trophic hormones increase CYP11A1 gene expression through transcription factors such as steroidogenic factor 1 (SF-1), by the α isoform of activating protein 2 (AP-2) in the human, and many others.[20][21] The production of this enzyme is inhibited notably by the nuclear receptor DAX-1.[20]
P450scc is always active, however its activity is limited by the supply of cholesterol in the inner membrane. The supplying of cholesterol to this membrane (from the outer mitochondrial membrane) is, thus, considered the true rate-limiting step in steroid production. This step is mediated primarily by the steroidogenic acute regulatory protein (StAR or STARD1). Upon stimulation of a cell to make steroid, the amount of StAR available to transfer cholesterol to the inner membrane limits how fast the reaction can go (the acute phase). With prolonged (chronic) stimulation, it is thought that cholesterol supply becomes no longer an issue and that the capacity of the system to make steroid (i.e., level of P450scc in the mitochondria) is now more important.
Corticotropin (ACTH) is a hormone that is released from the anterior pituitary in response to stress situations. A study of the steroidogenic capacity of the adrenal cortex in infants with acute respiratory disease demonstrated that indeed during disease state there is a specific increase in the steroidogenic capacity for the synthesis of the glucocorticoid cortisol but not for the mineralocorticoid aldosterone or androgen DHEAS that are secreted from other zones of the adrenal cortex.[22]
Pathology
Mutations in the CYP11A1 gene result in a steroid hormone deficiency, causing a minority of cases of the rare and potentially fatal condition lipoid congenital adrenal hyperplasia.[23][24][25]
See also
References
- ^ "Drugs that physically interact with Cholesterol side-chain cleavage enzyme, mitochondrial view/edit references on wikidata".
- ^ "Human PubMed Reference:".
- ^ "Mouse PubMed Reference:".
- ^ a b c d Hanukoglu I (December 1992). "Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis". The Journal of Steroid Biochemistry and Molecular Biology. 43 (8): 779–804. doi:10.1016/0960-0760(92)90307-5. PMID 22217824.
- ^ "Entrez Gene: CYP11A1 cytochrome P450, family 11, subfamily A, polypeptide 1".
- ^ Strauss JF, Martinez F, Kiriakidou M (February 1996). "Placental steroid hormone synthesis: unique features and unanswered questions". Biology of Reproduction. 54 (2): 303–11. doi:10.1095/biolreprod54.2.303. PMID 8788180.
- ^ Stoffel-Wagner B (December 2001). "Neurosteroid metabolism in the human brain". European Journal of Endocrinology / European Federation of Endocrine Societies. 145 (6): 669–79. doi:10.1530/eje.0.1450669. PMID 11720889.
- ^ Hanukoglu I, Hanukoglu Z (May 1986). "Stoichiometry of mitochondrial cytochromes P-450, adrenodoxin and adrenodoxin reductase in adrenal cortex and corpus luteum. Implications for membrane organization and gene regulation". European Journal of Biochemistry. 157 (1): 27–31. doi:10.1111/j.1432-1033.1986.tb09633.x. PMID 3011431.
- ^ Hanukoglu I, Suh BS, Himmelhoch S, Amsterdam A (October 1990). "Induction and mitochondrial localization of cytochrome P450scc system enzymes in normal and transformed ovarian granulosa cells". The Journal of Cell Biology. 111 (4): 1373–81. doi:10.1083/jcb.111.4.1373. PMC 2116250. PMID 2170421.
- ^ a b Hanukoglu I, Feuchtwanger R, Hanukoglu A (November 1990). "Mechanism of corticotropin and cAMP induction of mitochondrial cytochrome P450 system enzymes in adrenal cortex cells" (PDF). The Journal of Biological Chemistry. 265 (33): 20602–8. PMID 2173715.
- ^ Farkash Y, Timberg R, Orly J (April 1986). "Preparation of antiserum to rat cytochrome P-450 cholesterol side chain cleavage, and its use for ultrastructural localization of the immunoreactive enzyme by protein A-gold technique". Endocrinology. 118 (4): 1353–65. doi:10.1210/endo-118-4-1353. PMID 3948785.
- ^ Hanukoglu I, Privalle CT, Jefcoate CR (May 1981). "Mechanisms of ionic activation of adrenal mitochondrial cytochromes P-450scc and P-45011 beta". The Journal of Biological Chemistry. 256 (9): 4329–35. PMID 6783659.
- ^ Hanukoglu I, Rapoport R (1995). "Routes and regulation of NADPH production in steroidogenic mitochondria". Endocrine Research. 21 (1-2): 231–41. doi:10.3109/07435809509030439. PMID 7588385.
- ^ Hanukoglu I, Gutfinger T, Haniu M, Shively JE (Dec 1987). "Isolation of a cDNA for adrenodoxin reductase (ferredoxin-NADP+ reductase). Implications for mitochondrial cytochrome P-450 systems.". European Journal of Biochemistry. 169 (3): 449–455. doi:10.1111/j.1432-1033.1987.tb13632.x. PMID 3691502.
- ^ a b c Hanukoglu I, Jefcoate CR (April 1980). "Mitochondrial cytochrome P-450scc. Mechanism of electron transport by adrenodoxin". The Journal of Biological Chemistry. 255 (7): 3057–61. PMID 6766943.
- ^ Hanukoglu I, Spitsberg V, Bumpus JA, Dus KM, Jefcoate CR (May 1981). "Adrenal mitochondrial cytochrome P-450scc. Cholesterol and adrenodoxin interactions at equilibrium and during turnover". The Journal of Biological Chemistry. 256 (9): 4321–8. PMID 7217084.
- ^ Strushkevich N, MacKenzie F, Cherkesova T, Grabovec I, Usanov S, Park HW (June 2011). "Structural basis for pregnenolone biosynthesis by the mitochondrial monooxygenase system". Proceedings of the National Academy of Sciences of the United States of America. 108 (25): 10139–43. doi:10.1073/pnas.1019441108. PMC 3121847. PMID 21636783.
- ^ Hanukoglu I, Rapoport R, Weiner L, Sklan D (September 1993). "Electron leakage from the mitochondrial NADPH-adrenodoxin reductase-adrenodoxin-P450scc (cholesterol side chain cleavage) system". Archives of Biochemistry and Biophysics. 305 (2): 489–98. doi:10.1006/abbi.1993.1452. PMID 8396893.
- ^ Hanukoglu I (2006). "Antioxidant protective mechanisms against reactive oxygen species (ROS) generated by mitochondrial P450 systems in steroidogenic cells". Drug Metabolism Reviews. 38 (1-2): 171–96. doi:10.1080/03602530600570040. PMID 16684656.
- ^ a b c Lavoie HA, King SR (August 2009). "Transcriptional regulation of steroidogenic genes: STARD1, CYP11A1 and HSD3B". Experimental Biology and Medicine. 234 (8): 880–907. doi:10.3181/0903-MR-97. PMID 19491374.
- ^ Guo IC, Shih MC, Lan HC, Hsu NC, Hu MC, Chung BC (July 2007). "Transcriptional regulation of human CYP11A1 in gonads and adrenals". Journal of Biomedical Science. 14 (4): 509–15. doi:10.1007/s11373-007-9177-z. PMID 17594537.
- ^ Hanukoglu A, Fried D, Nakash I, Hanukoglu I (November 1995). "Selective increases in adrenal steroidogenic capacity during acute respiratory disease in infants". European Journal of Endocrinology / European Federation of Endocrine Societies. 133 (5): 552–6. doi:10.1530/eje.0.1330552. PMID 7581984.
- ^ Bhangoo A, Anhalt H, Ten S, King SR (March 2006). "Phenotypic variations in lipoid congenital adrenal hyperplasia". Pediatric Endocrinology Reviews. 3 (3): 258–71. PMID 16639391.
- ^ al Kandari H, Katsumata N, Alexander S, Rasoul MA (August 2006). "Homozygous mutation of P450 side-chain cleavage enzyme gene (CYP11A1) in 46, XY patient with adrenal insufficiency, complete sex reversal, and agenesis of corpus callosum". The Journal of Clinical Endocrinology and Metabolism. 91 (8): 2821–6. doi:10.1210/jc.2005-2230. PMID 16705068.
- ^ Kim CJ, Lin L, Huang N, Quigley CA, AvRuskin TW, Achermann JC, Miller WL (March 2008). "Severe combined adrenal and gonadal deficiency caused by novel mutations in the cholesterol side chain cleavage enzyme, P450scc". The Journal of Clinical Endocrinology and Metabolism. 93 (3): 696–702. doi:10.1210/jc.2007-2330. PMC 2266942. PMID 18182448.
Further reading
- Helmberg A (August 1993). "Twin genes and endocrine disease: CYP21 and CYP11B genes". Acta Endocrinologica. 129 (2): 97–108. doi:10.1530/acta.0.1290097. PMID 8372604.
- Papadopoulos V, Amri H, Boujrad N, Cascio C, Culty M, Garnier M, Hardwick M, Li H, Vidic B, Brown AS, Reversa JL, Bernassau JM, Drieu K (January 1997). "Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis". Steroids. 62 (1): 21–8. doi:10.1016/S0039-128X(96)00154-7. PMID 9029710.
- Stocco DM (June 2000). "Intramitochondrial cholesterol transfer". Biochimica et Biophysica Acta. 1486 (1): 184–97. doi:10.1016/S1388-1981(00)00056-1. PMID 10856721.
- Kristensen VN, Kure EH, Erikstein B, Harada N, Børresen-Dale A (October 2001). "Genetic susceptibility and environmental estrogen-like compounds". Mutation Research. 482 (1-2): 77–82. doi:10.1016/S0027-5107(01)00212-3. PMID 11535251.
- Strauss JF (November 2003). "Some new thoughts on the pathophysiology and genetics of polycystic ovary syndrome". Annals of the New York Academy of Sciences. 997 (1): 42–8. doi:10.1196/annals.1290.005. PMID 14644808.
- Wada A, Waterman MR (November 1992). "Identification by site-directed mutagenesis of two lysine residues in cholesterol side chain cleavage cytochrome P450 that are essential for adrenodoxin binding". The Journal of Biological Chemistry. 267 (32): 22877–82. PMID 1429635.
- Hu MC, Guo IC, Lin JH, Chung BC (March 1991). "Regulated expression of cytochrome P-450scc (cholesterol-side-chain cleavage enzyme) in cultured cell lines detected by antibody against bacterially expressed human protein". The Biochemical Journal. 274 (Pt 3): 813–7. doi:10.1042/bj2740813. PMC 1149983. PMID 1849407.
- Sparkes RS, Klisak I, Miller WL (June 1991). "Regional mapping of genes encoding human steroidogenic enzymes: P450scc to 15q23-q24, adrenodoxin to 11q22; adrenodoxin reductase to 17q24-q25; and P450c17 to 10q24-q25". DNA and Cell Biology. 10 (5): 359–65. doi:10.1089/dna.1991.10.359. PMID 1863359.
- Coghlan VM, Vickery LE (October 1991). "Site-specific mutations in human ferredoxin that affect binding to ferredoxin reductase and cytochrome P450scc". The Journal of Biological Chemistry. 266 (28): 18606–12. PMID 1917982.
- Matteson KJ, Chung BC, Urdea MS, Miller WL (April 1986). "Study of cholesterol side-chain cleavage (20,22 desmolase) deficiency causing congenital lipoid adrenal hyperplasia using bovine-sequence P450scc oligodeoxyribonucleotide probes". Endocrinology. 118 (4): 1296–305. doi:10.1210/endo-118-4-1296. PMID 2419119.
- Chung BC, Matteson KJ, Voutilainen R, Mohandas TK, Miller WL (December 1986). "Human cholesterol side-chain cleavage enzyme, P450scc: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta". Proceedings of the National Academy of Sciences of the United States of America. 83 (23): 8962–6. doi:10.1073/pnas.83.23.8962. PMC 387054. PMID 3024157.
- Morohashi K, Sogawa K, Omura T, Fujii-Kuriyama Y (April 1987). "Gene structure of human cytochrome P-450(SCC), cholesterol desmolase". Journal of Biochemistry. 101 (4): 879–87. PMID 3038854.
- Maruyama K, Sugano S (January 1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1-2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Gharani N, Waterworth DM, Batty S, White D, Gilling-Smith C, Conway GS, McCarthy M, Franks S, Williamson R (March 1997). "Association of the steroid synthesis gene CYP11a with polycystic ovary syndrome and hyperandrogenism". Human Molecular Genetics. 6 (3): 397–402. doi:10.1093/hmg/6.3.397. PMID 9147642.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (October 1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1-2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Hukkanen J, Mäntylä M, Kangas L, Wirta P, Hakkola J, Paakki P, Evisalmi S, Pelkonen O, Raunio H (February 1998). "Expression of cytochrome P450 genes encoding enzymes active in the metabolism of tamoxifen in human uterine endometrium". Pharmacology & Toxicology. 82 (2): 93–7. doi:10.1111/j.1600-0773.1998.tb01404.x. PMID 9498238.
- Zhou Z, Shackleton CH, Pahwa S, White PC, Speiser PW (March 1998). "Prominent sex steroid metabolism in human lymphocytes". Molecular and Cellular Endocrinology. 138 (1-2): 61–9. doi:10.1016/S0303-7207(98)00052-5. PMID 9685215.
Steroid hormone synthesis
Steroidogenesis, showing cholesterol side-chain cleavage enzyme at top.
Steroid hormone synthesis
Additional images
External links
- Cytochrome P450scc at the US National Library of Medicine Medical Subject Headings (MeSH)
Metabolism: lipid metabolism – ketones/cholesterol synthesis enzymes/steroid metabolism
|
|
Mevalonate pathway |
To HMG-CoA |
- Acetyl-Coenzyme A acetyltransferase
- HMG-CoA synthase (regulated step)
|
|
Ketogenesis |
- HMG-CoA lyase
- 3-hydroxybutyrate dehydrogenase
- Thiophorase
|
|
To Mevalonic acid |
|
|
To DMAPP |
- Mevalonate kinase
- Phosphomevalonate kinase
- Pyrophosphomevalonate decarboxylase
- Isopentenyl-diphosphate delta isomerase
|
|
Geranyl- |
- Dimethylallyltranstransferase
- Geranyl pyrophosphate
|
|
|
To cholesterol |
To lanosterol |
- Farnesyl-diphosphate farnesyltransferase
- Squalene monooxygenase
- Lanosterol synthase
|
|
7-Dehydrocholesterol path |
- Lanosterol 14α-demethylase
- Sterol-C5-desaturase-like
- 7-Dehydrocholesterol reductase
|
|
Desmosterol path |
- 24-dehydrocholesterol reductase
|
|
|
To Bile acids |
- Cholesterol 7α-hydroxylase
- Sterol 27-hydroxylase
|
|
Steroidogenesis |
To pregnenolone |
|
|
To corticosteroids |
- aldosterone: 18-hydroxylase
- cortisol/cortisone: 17α-hydroxylase
- 11β dehydrogenase
- both: 3β dehydrogenase
- 21α-hydroxylase
- 11β-hydroxylase
|
|
To sex hormones |
To androgens |
- 17α-hydroxylase/17,20 lyase
- 3β dehydrogenase
- 17β dehydrogenase
- 5α reductase
|
|
To estrogens |
|
|
|
Other/ungrouped |
- Steroid metabolism: sulfatase
- sulfotransferase
- Steroidogenic acute regulatory protein
- Cholesterol total synthesis
- Reverse cholesterol transport
|
|
Cytochromes, oxygenases: cytochrome P450 (EC 1.14)
|
|
CYP1 |
|
|
CYP2 |
- A6
- A7
- A13
- B6
- C8
- C9
- C18
- C19
- D6
- E1
- F1
- J2
- R1
- S1
- U1
- W1
|
|
CYP3 (CYP3A) |
|
|
CYP4 |
- A11
- A22
- B1
- F2
- F3
- F8
- F11
- F12
- F22
- V2
- X1
- Z1
|
|
CYP5-20 |
- CYP5 (A1)
- CYP7 (A1, B1)
- CYP8 (A1, B1)
- CYP11 (A1, B1, B2)
- CYP17 (A1)
- CYP19 (A1)
- CYP20 (A1)
|
|
CYP21-51 |
- CYP21 (A2)
- CYP24 (A1)
- CYP26 (A1, B1, C1)
- CYP27 (A1, B1, C1)
- CYP39 (A1)
- CYP46 (A1)
- CYP51 (A1)
|
Enzymes: multienzyme complexes
|
|
Photosynthesis |
- Photosynthetic reaction center complex proteins
- Photosystem
|
|
Dehydrogenase |
- Pyruvate dehydrogenase complex
- Oxoglutarate dehydrogenase
- Branched-chain alpha-keto acid dehydrogenase complex
|
|
Other |
- CAD
- Carbamoyl phosphate synthase II
- Aspartate carbamoyltransferase
- Dihydroorotase
- Cholesterol side-chain cleavage enzyme
- Cytochrome b6f complex
- Electron transport chain
- Fatty acid synthetase complex
- Glycine decarboxylase complex
- Mitochondrial trifunctional protein
- Phosphoenolpyruvate sugar phosphotransferase system
- Polyketide synthase
- Sucrase-isomaltase complex
- Tryptophan synthase
|
Mitochondrial proteins
|
|
Outer membrane |
fatty acid degradation |
- Carnitine palmitoyltransferase I
- Long-chain-fatty-acid—CoA ligase
|
|
tryptophan metabolism |
|
|
monoamine neurotransmitter
metabolism |
|
|
|
Intermembrane space |
- Adenylate kinase
- Creatine kinase
|
|
Inner membrane |
oxidative phosphorylation |
- Coenzyme Q – cytochrome c reductase
- Cytochrome c
- NADH dehydrogenase
- Succinate dehydrogenase
|
|
pyrimidine metabolism |
- Dihydroorotate dehydrogenase
|
|
mitochondrial shuttle |
- Malate-aspartate shuttle
- Glycerol phosphate shuttle
|
|
other |
- Glutamate aspartate transporter
- Glycerol-3-phosphate dehydrogenase
- ATP synthase
- Carnitine palmitoyltransferase II
- Uncoupling protein
|
|
|
Matrix |
citric acid cycle |
- Citrate synthase
- Aconitase
- Isocitrate dehydrogenase
- Oxoglutarate dehydrogenase complex
- Succinyl coenzyme A synthetase
- Fumarase
- Malate dehydrogenase
|
|
anaplerotic reactions |
- Aspartate transaminase
- Glutamate dehydrogenase
- Pyruvate dehydrogenase complex
|
|
urea cycle |
- Carbamoyl phosphate synthetase I
- Ornithine transcarbamylase
- N-Acetylglutamate synthase
|
|
alcohol metabolism |
|
|
|
|
|
Other/to be sorted |
steroidogenesis |
- Cholesterol side-chain cleavage enzyme
- Steroid 11-beta-hydroxylase
- Aldosterone synthase
- Frataxin
|
|
- Mitochondrial membrane transport protein
- Mitochondrial permeability transition pore
- Mitochondrial carrier
|
|
|
Mitochondrial DNA |
Complex I |
- MT-ND1
- MT-ND2
- MT-ND3
- MT-ND4
- MT-ND4L
- MT-ND5
- MT-ND6
|
|
Complex III |
|
|
Complex IV |
|
|
ATP synthase |
|
|
tRNA |
- MT-TA
- MT-TC
- MT-TD
- MT-TE
- MT-TF
- MT-TG
- MT-TH
- MT-TI
- MT-TK
- MT-TL1
- MT-TL2
- MT-TM
- MT-TN
- MT-TP
- MT-TQ
- MT-TR
- MT-TS1
- MT-TS2
- MT-TT
- MT-TV
- MT-TW
- MT-TY
|
|
|
see also mitochondrial diseases
|
Steroid hormone metabolism modulators
|
|
HMGCR |
- Inhibitors: Atorvastatin
- Cerivastatin
- Fluvastatin
- Lovastatin
- Mevastatin
- Pitavastatin
- Pravastatin
- Rosuvastatin
- Simvastatin
|
|
FPS |
- Inhibitors: Alendronic acid
- Clodronic acid
- Etidronic acid
- Ibandronic acid
- Incadronic acid
- Pamidronic acid
- Risedronic acid
- Tiludronic acid
- Zoledronic acid
|
|
24-DHCR24 |
- 20,25-Diazacholesterol
- Clomifene
- Triparanol
|
|
20,22-Desmolase
(P450scc) |
- Inhibitors: 22-ABC
- 3,3′-Dimethoxybenzidine
- 3-Methoxybenzidine
- Aminoglutethimide
- Canrenone
- Cyanoketone
- Danazol
- Etomidate
- Ketoconazole
- Mitotane
- Spironolactone
- Trilostane
|
|
17α-Hydroxylase,
17,20-Lyase |
- Inhibitors: 22-ABC
- 22-Oxime
- Δ4-Abiraterone
- Abiraterone
- Abiraterone acetate
- Amphenone
- Bifluranol
- Bifonazole
- Canrenone
- CFG-920
- Clotrimazole
- Cyanoketone
- Cyproterone acetate
- Danazol
- Econazole
- Flutamide
- Galeterone
- Gestrinone
- Isoconazole
- Ketoconazole
- L-39
- Levoketoconazole
- Liarozole
- LY-207,320
- MDL-27,302
- Miconazole
- Mifepristone
- Nilutamide
- Orteronel
- Pioglitazone
- Prochloraz
- Rosiglitazone
- Seviteronel
- Spironolactone
- Stanozolol
- SU-9055
- SU-10603
- TGF-β
- Tioconazole
- Troglitazone
- VN/87-1
- YM116
|
|
3α-HSD |
- Inhibitors: Coumestrol
- Daidzein
- Genistein
- Indomethacin
- Medroxyprogesterone acetate
- Inducers: Fluoxetine
- Fluvoxamine
- Mirtazapine
- Paroxetine
- Sertraline
- Venlafaxine
|
|
3β-HSD |
- Inhibitors: 4-MA
- Δ4-Abiraterone
- Abiraterone
- Abiraterone acetate
- Azastene
- Cyanoketone
- Cyproterone acetate
- Danazol
- Epostane
- Genistein
- Gestrinone
- Medrogestone
- Medroxyprogesterone acetate
- Metyrapone
- Norethisterone
- Oxymetholone
- Pioglitazone
- Rosiglitazone
- Trilostane
- Troglitazone
|
|
11β-HSD |
- Inhibitors: 11α-Hydroxyprogesterone
- 11β-Hydroxyprogesterone
- 18α-Glycyrrhizic acid
- ABT-384
- Acetoxolone
- Carbenoxolone
- Enoxolone (glycyrrhetinic acid)
- Epigallocatechin gallate
- Glycyrrhizin (glycyrrhizic acid)
- Progesterone
|
|
21-Hydroxylase |
- Inhibitors: Aminoglutethimide
- Amphenone B
- Bifonazole
- Canrenone
- Clotrimazole
- Diazepam
- Econazole
- Genistein
- Isoconazole
- Ketoconazole
- Levoketoconazole
- Metyrapone
- Miconazole
- Midazolam
- Spironolactone
- Tioconazole
|
|
11β-Hydroxylase |
- Inhibitors: Δ4-Abiraterone
- Abiraterone
- Abiraterone acetate
- Aminoglutethimide
- Canrenone
- Etomidate
- Fadrozole
- FETO
- Ketoconazole
- Levoketoconazole
- Metomidate
- Metyrapol
- Metyrapone
- Mitotane
- Potassium canrenoate
- Spironolactone
- Trilostane
|
|
18-Hydroxylase |
- Inhibitors: 18-Ethynylprogesterone (18-ethinylprogesterone)
- 18-Vinylprogesterone
- Aminoglutethimide
- Canrenone
- FAD286
- Fadrozole
- Ketoconazole
- LCI699
- Metyrapone
- Mespirenone
- Potassium canrenoate
- Spironolactone
|
|
17β-HSD |
- Inhibitors: Danazol
- Simvastatin
|
|
5α-Reductase |
- Inhibitors: 22-Oxime
- Δ4-Abiraterone
- Abiraterone
- Abiraterone acetate
- Alfatradiol
- Azelaic acid
- β-Sitosterol
- Bexlosteride
- Chlormadinone acetate
- Cl-4AS-1
- Dutasteride
- Epitestosterone
- Epristeride
- Fatty acids (α-linolenic acid, linoleic acid, γ-linolenic acid, monolinolein, oleic acid)
- Finasteride
- Ganoderic acid
- Gestodene
- Izonsteride
- L-39
- Lapisteride
- Oxendolone
- Saw palmetto
- TFM-4AS-1
- Turosteride
- Vitamin B6
- Zinc
|
|
Aromatase |
- Inhibitors: 4-AT
- 4-Cyclohexylaniline
- 4-Hydroxytestosterone
- 5α-DHNET
- 20α-Dihydroprogesterone
- Abyssinone II
- Aminoglutethimide
- Anastrozole
- Ascorbic acid (vitamin C)
- Atamestane
- ATD
- Bifonazole
- CGP-45,688
- CGS-47,645
- Chalconoids (e.g., isoliquiritigenin)
- Clotrimazole
- Corynesidone A
- Coumestrol
- DHT
- Difeconazole
- Econazole
- Ellagitannins
- Endosulfan
- Exemestane
- Fadrozole
- Fatty acids (e.g., conjugated linoleic acid, linoleic acid, linolenic acid, palmitic acid)
- Fenarimol
- Finrozole
- Flavonoids (e.g., 7-hydroxyflavone, 7-hydroxyflavanone, 7,8-DHF, acacetin, apigenin, baicalein, biochanin A, chrysin, EGCG, gossypetin, hesperetin, liquiritigenin, myricetin, naringenin, pinocembrin, rotenone, quercetin, sakuranetin, tectochrysin)
- Formestane
- Imazalil
- Isoconazole
- Ketoconazole
- Letrozole
- Liarozole
- Melatonin
- MEN-11066
- Miconazole
- Minamestane
- Nimorazole
- NKS01
- Norendoxifen
- ORG-33,201
- Penconazole
- Phenytoin
- Prochloraz
- PGE2 (dinoprostone)
- Plomestane
- Prochloraz
- Propioconazole
- Pyridoglutethimide
- Quinolinoids (e.g., berberine, casimiroin, triptoquinone A, XHN22, XHN26, XHN27)
- Resorcylic acid lactones (e.g., zearalenone)
- Rogletimide
- Stilbenoids (e.g., resveratrol)
- Talarozole
- Terpenoids (e.g., dehydroabietic acid, (–)-dehydrololiolide, retinol (vitamin A), Δ9-THC, tretinoin)
- Testolactone
- Tioconazole
- Triadimefon
- Triadimenol
- Troglitazone
- Valproic acid
- Vorozole
- Xanthones (e.g., garcinone D, garcinone E, α-mangostin, γ-mangostin, monodictyochrome A, monodictyochrome B)
- YM-511
- Zinc
- Inducers: Atrazine
- Flavonoids (e.g., genistein, quercetin)
|
|
SST/EST |
- 4′OH-CB79
- 6-Hydroxyflavone
- 2,6-Dichloro-4-nitrophenol (DCNP)
- Equol
- Galangin
- Genistein
- Parabens (e.g., butylparaben)
- Pentachlorophenol (PCP)
- Triclosan
|
|
STS |
- AHBS
- Danazol
- Estrone-3-O-sulfamate (EMATE)
- Irosustat (STX64, 667 Coumate, BN-83495)
- KW-2581
- Progestogens
- SR-16157
- STX213
- STX681
- STX1938
|
|
27-Hydroxylase |
- Inhibitors: Anastrozole
- Bicalutamide
- Dexmedetomidine
- Fadrozole
- Posaconazole
- Ravuconazole
|
|
Others |
- Inhibitors: Inhibit estradiol degradation: Cimetidine
|
|
See also: Androgenics • Estrogenics • Glucocorticoidics • Mineralocorticoidics • Progestogenics
|
Oxidoreductases: CH-NH (EC 1.5)
|
|
1.5.1: NAD or NADP acceptor |
- Dihydrofolate reductase
- Saccharopine dehydrogenase
- Methylenetetrahydrofolate reductase
|
|
1.5.3: oxygen acceptor |
- Dihydrobenzophenanthridine oxidase
- Sarcosine oxidase
- Proline oxidase
|
|
1.5.5: quinone acceptor |
- Electron-transferring-flavoprotein dehydrogenase
|
|
1.5.99 |
- Sarcosine dehydrogenase
- Cytokinin dehydrogenase
|
Enzymes
|
|
Activity |
- Active site
- Binding site
- Catalytic triad
- Oxyanion hole
- Enzyme promiscuity
- Catalytically perfect enzyme
- Coenzyme
- Cofactor
- Enzyme catalysis
- Enzyme kinetics
- Lineweaver–Burk plot
- Michaelis–Menten kinetics
|
|
Regulation |
- Allosteric regulation
- Cooperativity
- Enzyme inhibitor
|
|
Classification |
- EC number
- Enzyme superfamily
- Enzyme family
- List of enzymes
|
|
Types |
- EC1 Oxidoreductases(list)
- EC2 Transferases(list)
- EC3 Hydrolases(list)
- EC4 Lyases(list)
- EC5 Isomerases(list)
- EC6 Ligases(list)
|