- 英
- spheroidal
- 関
- 楕円体
Wikipedia preview
出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2014/01/29 20:47:44」(JST)
[Wiki ja表示]
|
この項目では、球(きゅう)について記述しています。球(たま)については「ボール」をご覧ください。 |
球(きゅう、英: ball)あるいは球体(きゅうたい、英: solid sphere)とは、空間上のある一定点から一定の距離にある点の集合である球面 (sphere) とその内部にある点からなる集合。ここで用いた定点を「球の中心」、一定の距離を「球の半径」と呼ぶ。中心を通る直線(中心線)から、球面が切り取る線分を「球の直径」と呼び、その長さは半径の2倍に等しい。球面のことを「球の表面」あるいは単に「球」と呼ぶことがある。通常は3次元空間にあるものを指す場合が多い。
目次
- 1 3次元空間の球
- 2 3次元空間の球の計量
- 2.1 表面積
- 2.2 体積
- 2.3 その他の性質
- 3 n 次元空間の球
- 4 関連項目
3次元空間の球[編集]
- 球は、半円をその直径を軸として回転させることによって得られる回転体の一種である。
- 球と平面が接するとき、その交わりは平面上の1点となって現れる。この点を球と平面の「接点」、平面を球の「接平面」と呼ぶ。球の中心と接平面の距離は、球の半径に等しい。球の中心と接点を結んだ半径(接点半径)は、接平面と直交する。
- 球と平面が交わるとき、その交わりは平面上の円となって現れる。この円を球と平面の「交円」、平面を球の「割平面」と呼ぶ。球の中心と割平面の距離は、球の半径よりも短い。交円の中心から割平面に立てた垂線を「交円の軸」と呼ぶ。交円の軸は、球の中心を通る。特に、割平面が球の中心を通るとき、交円の半径は最大となり、このときの交円を「大円」と呼ぶ。大円の半径は、球の半径に等しい。球面上を通って、球面上の2点を結ぶ経路の最短は、大円の弧となる。大円以外の交円を「小円」と呼ぶ。割平面により切り取られる球面の一部を「球冠」といい、球冠と割平面によって囲まれた立体を「球欠」と呼ぶ。球欠を囲む交円を「球欠の底面」、底面を成す交円の軸から球欠が切り取る線分の長さを「球欠の高さ」と呼ぶ。割平面が球の中心を通るとき、球冠を「半球面」、球欠を「半球」と呼ぶ。
- 球の中心と小円を結ぶ円錐面によって切り取られる球の一部を「球分」と呼ぶ。また、球面上の閉じた図形の周と球の中心を結ぶ母線によって切り取られる球の一部を、広く「球分」と呼ぶことがある。
- 球と平行な2平面が交わるとき、その交わりは互いに平行な2円となって現れる。2平面にはさまれた球面の一部を「球帯」といい、球帯とこれら2平面によって囲まれた立体を「球台」と呼ぶ。球台を囲む球帯を「球台の側面」、球台を囲む2円を「球台の底面」、底面を隔てる距離を「球台の高さ」と呼ぶ。
- 3次元球の接吻数、すなわち1つの単位球に一度に接することのできる単位球の最大個数は 12 である。
- 3次元球の球面上に、複数の点を平等に配する方法は6種類しかない。すなわち、直径の両端および球に内接する正多面体(5種類)の頂点である。
- 誤って、「球欠」や「球台」のことを「球分」と邦訳した書籍があるので注意。
3次元空間の球の計量[編集]
以下、半径を r、表面積を S、体積を V、π は円周率とする。
表面積[編集]
- 「心 (4) 配 (π) ごとがある (r) 事情(自乗)」と覚える。
- 証明例1
- 半径 r の球は半円 を x 軸周りに回転体である。ある x から x + Δx にかけての微小な表面積 ΔS は
- となる。したがって表面積 S は
- 証明例2
- カヴァリエリの原理を用いて、球の表面積は、その球が内接する円柱の側面の面積と等しいというものがある。
- 円柱の中心と鉛直に、極限まで薄く断面のスライスをとったとき、スライスの位置を θ(ラジアン)、幅を dθ(ラジアン)、球および円柱の半径を r とすると、球の表面のスライスの面積は rdθ × 2π(rcos θ)となる。円柱側面のスライスは rdθcos θ × 2πr となり、これらは等しい。すなわち内接する円柱の側面積に等しい。よって 2r × 2πr = 4πr2
- 証明例3
- またこの幅 rdθ のスライスを回転させたものは、円周 2π(rcos θ) であり、面積は
- である。これを積分すると
体積[編集]
- 「身 (3) の上に (/) 心 (4) 配 (π) ある (r) 参上(3乗)」と覚える。
- 証明例
- 半球の底面を z = 0 とすると、z 軸と直交する球内の平面の面積 S(z) は半径 の円の面積に等しい。したがって S(z) = π(r2 − z2) であり、半球の体積は
- 球の体積は半球の体積の2倍なので
その他の性質[編集]
- 球の体積を r で微分すると球の表面積が、逆に球の表面積を積分定数を 0 として r で積分すると球の体積が得られる。
- 球面を微少な面積 δ に分割し、その面積 δ を囲む図形の周と球の中心を結んた球分の体積を、底辺 δ,高さ r の錐で近似すると 1/3δr、それらの総和として V = 1/3Sr を導くことができる。
n 次元空間の球[編集]
ただし Γ(z) はオイラーのガンマ関数である。
0次元球は点、1次元球は長さ 2r の線分、2次元球は半径 r の円になる。
2次元球(円)や3次元球(球)と同様、体積を r で微分すれば表面積が、逆に表面積を積分定数を 0 として r で積分すれば体積が得られる。
n 次元単位球の体積は n = 5 のとき、表面積は n = 7 のときにそれぞれ最大値をとり、それ以降は n の増加に伴いどちらも急激に減少して 0 に収束する。
関連項目[編集]
- 円
- 球面
- 球充填
- 扁球
- 回転楕円体
- 回転体
- 超球
- 幾何学
- 恩物:フリードリッヒ・フレーベルが幼児のために考案した玩具。第1恩物として球を採用している。
- 球対称
- 太陽:実在する物体の中で最も球体に近いものの一つとされている。扁平率はおよそ 9×10−6。
UpToDate Contents
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
Japanese Journal
- 臨床研究・症例報告 川崎病の急性期に急性糸球体腎炎を発症した7歳男児
- 電気的に合成した円/楕円駆動による直線動作超音波モーターを用いた回転運動の生成
- 疋田 光孝,柳楽 裕介,坂谷内 寿明
- 工学院大学研究報告 (118), 119-123, 2015-04-30
- … る駆動電圧の振幅と位相制御することにより,必要とするシャフト先端の微小回転が得られることを示す5,6).実験では,バイモルフに接続した直交する2 個のシャフトを1 単位として,これを3 組用い,これらを正三角形の頂点に配置する「3組三角構造」とした.更に,この上に半球状の回転体を設置した.我々は,半球体の回転を観測出来たのみならず,駆動電圧の形状,すなわち円/楕円の形と回転効率の関係に関しても知見を得た. …
- NAID 110009896042
- 第80回東京女子医科大学学会総会シンポジウム「東京女子医大 小児医療の最前線!-"なおらない"から"なおる"へ-」Part 1 (1)小児腎臓病診療の進歩
- 服部 元史
- 東京女子医科大学雑誌 85(2), 39-43, 2015-04-25
- … 小児腎臓病診療の進歩に関して、小児慢性糸球体腎炎の早期発見と治療、そして小児末期腎不全診療の点からその一端を紹介する。 … 1974年に学校検尿が始まったが、それ以降、慢性糸球体腎炎による小児末期腎不全患者数は確実に減少している。 …
- NAID 110009900090
Related Links
- [球体] ムック, Tatsuro, Miya, ken, SPACEWALKERS - CD・レコードの購入はオンライン通販アマゾン公式サイトで。お急ぎ便ご利用で当日・翌日にお届け。 ... メディア掲載レビュー 海外でライヴを行なうなど、ワールド・ワイドに活躍する ...
- まずは表面積です。 球の半径をr、円周率をπ、求める表面積をSとすると これが球の表面積を求める公式です。 ... 続いて体積です。 表面積と同じように、球の半径をr、円周率をπ、そして体積をVとすると これが球の体積を求める ...
Related Pictures
★リンクテーブル★
[★]
- 英
- ellipsoid、ellipsoidal、spheroidal
- 関
- 球体
[★]
- 英
- nonstreptococcal postinfectious acute glomerulonephritis
- 同
- 非連鎖球菌性糸球体腎炎 nonstreptococcal glomerulonephritis
- 関
- 溶連菌感染後急性糸球体腎炎
[★]
溶連菌感染後急性糸球体腎炎
[★]
溶連菌感染後急性糸球体腎炎
[★]
溶連菌感染後急性糸球体腎炎
[★]
溶連菌感染後急性糸球体腎炎
[★]
- 英
- body
- ラ
- corpus、corpora
- 関
- 肉体、身体、本体、コーパス、ボディー