出典(authority):フリー百科事典『ウィキペディア(Wikipedia)』「2015/06/18 19:48:17」(JST)
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(2012年12月) |
well-defined は、ある概念が数学的あるいは論理学的に特定の条件を公理に用いて定義・導入されるとき、その定義(における公理の組)が自己矛盾をその中に含み持たぬ状態にあることを言い表す修飾語句である。また、ある概念の定義をする場合、そう決めることによって、何も論理的な矛盾なく上手くいくということ(定義の整合性)が確認されているということを言い表す言葉である。文脈により、「うまく定義されている」「矛盾なく定まった」「定義可能である」などと表現されることもある。
well-defined は「状態」を表す形容詞であるが、日本語の定訳はなく慣例的に形容詞と動詞の複合語に訳されるか、そのまま形容動詞的に「well-defined である」といった形で用いる。名詞形 well-definedness などもあり、これを well-defined 性と記すことはできるが日本語訳としてこなれたものは特には存在しない(文脈によっては「定義可能性」などで代用可能である)。
以下の二つが示せたとき、定義が well-defined であるという[1]。
一つの対象のある表示に対して定義が満たされるが、別のある表示については満たされない状況であるとか、一つの対象の異なる表示を考えると定義の示す結果がそれぞれの表示に対して異なるといった状況であるならば、与えられた定義はその対象自体に対する定義として不適切 (ill-defined) である。
例えば、写像あるいは(一価の)関数 f は代入原理と呼ばれる条件
を満たす対応(一意対応)でなければならないから、同値類に対する写像をその代表元を用いて定義しようとする場面などでは well-defined 性が問題になる。典型的なものが、代数学において商代数系(商群や商環、商ベクトル空間など)の演算を導入する場面に現れる。
鎖複体の射からホモロジー(これは鎖複体から定まるある商加群である)の間の準同型が誘導されるが、このときも well-defined 性が問題になる。上述の一意性に加え、写像の行き先が実際に終域に入っていることを確かめなくてはならない。
実数 a > 0 の実数 x 乗を、x に収束する有理数列 {xn} を用いて
と定義するときにも、well-defined 性が問題になる[1]。右辺の収束性と一意性({xn} の取り方によらないこと)である。
In mathematics, an expression is called well-defined or unambiguous if its definition assigns it a unique interpretation or value. Otherwise, the expression is said to be not well-defined or ambiguous.[1] A function is well-defined if it gives the same result when the representation of the input is changed without changing the value of the input. For instance if f takes real numbers as input, and if f(0.5) does not equal f(1/2) then f is not well-defined (and thus: not a function).[2] The term well-defined is also used to indicate whether a logical statement is unambiguous.
Let be sets, let and define as if and if . Then is well-defined if . If however then is not well-defined because is ambiguous for .
In group theory, the term well-defined is often used when dealing with cosets, where a function f on a quotient group may be defined in terms of a coset representative. Here, a necessary requirement for f to be considered a function is that the output must be independent of which coset representative is chosen. The phrase f is well-defined is used to indicate that this requirement has been verified.
For example, consider , the integers modulo 2. Since 4 and 6 are congruent modulo 2, a function f whose domain is must give the same output when the input is represented by 4 that it gives when the input is represented by 6.
A function that is not well-defined is not the same as a function that is undefined. For example, if f(x) = 1/x, then f(0) is undefined, but this has nothing to do with the question of whether f(x) = 1/x is well-defined. It is; 0 is simply not in the domain of the function.
In particular, the term well-defined is used with respect to (binary) operations on cosets. In this case one can view the operation as a function of two variables and the property of being well-defined is the same as that for a function. For example, addition on the integers modulo some n can be defined naturally in terms of integer addition.
The fact that this is well-defined follows from the fact that we can write any representative of as , where k is an integer. Therefore,
and similarly for any representative of .
For real numbers, the product is unambiguous because .[1] In this case this notation is said to be well-defined. However, if the operation (here ) did not have this property, which is known as associativity, then there must be a convention for which two elements to multiply first. Otherwise, the product is not well-defined. The subtraction operation, , is not associative, for instance. However, the notation is well-defined under the convention that the operation is understood as addition of the opposite, thus is the same as . Division is also non-associative. However, does not have an unambiguous conventional interpretation, so this expression is ill-defined.
A solution to a partial differential equation is said to be well-defined if it is determined by the boundary conditions in a continuous way as the boundary conditions are changed.[1]
全文を閲覧するには購読必要です。 To read the full text you will need to subscribe.
関連記事 | 「well」「define」 |
.